
www.manaraa.com

Portland State University
PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2011

HOLCF '11: A Definitional Domain Theory for Verifying
Functional Programs
Brian Charles Huffman
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized
administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Recommended Citation
Huffman, Brian Charles, "HOLCF '11: A Definitional Domain Theory for Verifying Functional Programs" (2011). Dissertations and
Theses. Paper 113.

10.15760/etd.113

https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/open_access_etds/113?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F113&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.15760/etd.113
mailto:pdxscholar@pdx.edu


www.manaraa.com

HOLCF ’11: A Definitional Domain Theory for Verifying Functional Programs

by

Brian Charles Huffman

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
James Hook, Chair
John Matthews
Mark Jones
Tim Sheard

Gerardo Lafferriere

Portland State University
c© 2012



www.manaraa.com

This work is licensed under the Creative Commons Attribu-

tion 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/ or send a

letter to Creative Commons, 444 Castro Street, Suite 900,

Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by/3.0/


www.manaraa.com

i

ABSTRACT

HOLCF is an interactive theorem proving system that uses the mathematics of

domain theory to reason about programs written in functional programming lan-

guages. This thesis introduces HOLCF ’11, a thoroughly revised and extended

version of HOLCF that advances the state of the art in program verification:

HOLCF ’11 can reason about many program definitions that are beyond the scope

of other formal proof tools, while providing a high degree of proof automation. The

soundness of the system is ensured by adhering to a definitional approach: New

constants and types are defined in terms of previous concepts, without introducing

new axioms.

Major features of HOLCF ’11 include two high-level definition packages: the

Fixrec package for defining recursive functions, and the Domain package for

defining recursive datatypes. Each of these uses the domain-theoretic concept of

least fixed points to translate user-supplied recursive specifications into safe low-

level definitions. Together, these tools make it easy for users to translate a wide

variety of functional programs into the formalism of HOLCF. Theorems generated

by the tools also make it easy for users to reason about their programs, with a

very high level of confidence in the soundness of the results.

As a case study, we present a fully mechanized verification of a model of con-

currency based on powerdomains. The formalization depends on many features

unique to HOLCF ’11, and is the first verification of such a model in a formal

proof tool.



www.manaraa.com

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, John Matthews, for having continued to devote

so much time to working with me, even as a part-time professor; and for motivating

me to keep studying domain theory (and enjoying it!) these past years.



www.manaraa.com

iii

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Informal reasoning with Haskell . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Haskell terms and types . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Equational reasoning . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Proofs by induction . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Bottoms and partial values . . . . . . . . . . . . . . . . . . . 7
1.1.5 Infinite values and admissibility conditions . . . . . . . . . . 9

1.2 A preview of formal reasoning with HOLCF ’11 . . . . . . . . . . . 10
1.3 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Logic of computable functions . . . . . . . . . . . . . . . . . 13
1.3.2 LCF style theorem provers . . . . . . . . . . . . . . . . . . . 14
1.3.3 Higher order logic and the definitional approach . . . . . . . 16
1.3.4 Isabelle/HOLCF . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Basic Domain Theory in HOLCF . . . . . . . . . . . . . . . . . . . 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Abstract domain theory . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Type class hierarchy for cpos . . . . . . . . . . . . . . . . . 27
2.2.2 Continuous functions . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Fixed points, admissibility, and compactness . . . . . . . . . 32

2.3 Defining cpos as subtypes: The Cpodef package . . . . . . . . . . . 36
2.4 HOLCF types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



www.manaraa.com

iv

2.4.1 Cartesian product cpo . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 Full function space cpo . . . . . . . . . . . . . . . . . . . . . 44
2.4.3 Continuous function type . . . . . . . . . . . . . . . . . . . . 45
2.4.4 Lifted cpo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 Cpos from HOL types . . . . . . . . . . . . . . . . . . . . . 51
2.4.6 Strict product type . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.7 Strict sum type . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Automating continuity proofs . . . . . . . . . . . . . . . . . . . . . 63
2.5.1 Original HOLCF continuity tactic . . . . . . . . . . . . . . . 63
2.5.2 Bottom-up continuity proofs . . . . . . . . . . . . . . . . . . 64
2.5.3 Efficient continuity rules using products . . . . . . . . . . . 67

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Recursive Value Definitions: The Fixrec Package . . . . . . . . . 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Fixrec package features . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Expressing recursion with fix . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Pattern match compilation . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Compiling to simple case expressions . . . . . . . . . . . . . 85
3.4.2 Original Fixrec: Monadic pattern matching . . . . . . . . . 87
3.4.3 New Fixrec: Continuation-based matching combinators . . 90

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.1 Pattern match type . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Table of pattern match combinators . . . . . . . . . . . . . . 93
3.5.3 Pattern match compilation . . . . . . . . . . . . . . . . . . . 94
3.5.4 Fixed point definition and continuity proof . . . . . . . . . . 98
3.5.5 Proving pattern match equations . . . . . . . . . . . . . . . 100
3.5.6 Mutual recursion . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Recursive Datatype Definitions: The Domain Package . . . . . . 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Domain package features . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Strict and lazy constructors . . . . . . . . . . . . . . . . . . 112
4.2.2 Case expressions . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.3 Mixfix syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 114



www.manaraa.com

v

4.2.4 Selector functions . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2.5 Discriminator functions . . . . . . . . . . . . . . . . . . . . . 115
4.2.6 Fixrec package support . . . . . . . . . . . . . . . . . . . . . 116
4.2.7 Take functions . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.8 Induction rules . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.9 Finite-valued domains . . . . . . . . . . . . . . . . . . . . . 118
4.2.10 Coinduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.11 Indirect recursion . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.1 Input specification module . . . . . . . . . . . . . . . . . . . 122
4.3.2 Isomorphism axioms module . . . . . . . . . . . . . . . . . . 125
4.3.3 Take functions module . . . . . . . . . . . . . . . . . . . . . 126
4.3.4 Reach axioms module . . . . . . . . . . . . . . . . . . . . . . 130
4.3.5 Take induction module . . . . . . . . . . . . . . . . . . . . . 130
4.3.6 Constructor functions module . . . . . . . . . . . . . . . . . 134
4.3.7 Take rules module . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.8 Induction rules module . . . . . . . . . . . . . . . . . . . . . 145

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.1 Problems with axioms . . . . . . . . . . . . . . . . . . . . . 147

5 Powerdomains and Ideal Completion . . . . . . . . . . . . . . . . . 150
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Nondeterminism monads . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3 Powerdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.1 Convex powerdomain . . . . . . . . . . . . . . . . . . . . . . 160
5.3.2 Upper powerdomain . . . . . . . . . . . . . . . . . . . . . . 162
5.3.3 Lower powerdomain . . . . . . . . . . . . . . . . . . . . . . . 163
5.3.4 Visualizing powerdomains . . . . . . . . . . . . . . . . . . . 164

5.4 Powerdomain library features . . . . . . . . . . . . . . . . . . . . . 165
5.4.1 Type class constraints . . . . . . . . . . . . . . . . . . . . . 166
5.4.2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.5 Ideal completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5.1 Preorders and ideals . . . . . . . . . . . . . . . . . . . . . . 172
5.5.2 Formalizing ideal completion . . . . . . . . . . . . . . . . . . 173
5.5.3 Continuous extensions of functions . . . . . . . . . . . . . . 178
5.5.4 Formalizing continuous extensions . . . . . . . . . . . . . . . 178



www.manaraa.com

vi

5.6 Bifinite cpos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.6.1 Type class for bifinite cpos . . . . . . . . . . . . . . . . . . . 181
5.6.2 Bifinite types as ideal completions . . . . . . . . . . . . . . . 183

5.7 Construction of powerdomains . . . . . . . . . . . . . . . . . . . . . 184
5.7.1 Powerdomain basis type . . . . . . . . . . . . . . . . . . . . 185
5.7.2 Defining powerdomain types with ideal completion . . . . . 186
5.7.3 Defining constructor functions by continuous extension . . . 186
5.7.4 Proving properties about the constructors . . . . . . . . . . 189
5.7.5 Defining functor and monad operations . . . . . . . . . . . . 191

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 The Universal Domain and Definitional Domain Package . . . . 195
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2.1 Embedding-projection pairs and deflations . . . . . . . . . . 197
6.2.2 Deflation model of datatypes . . . . . . . . . . . . . . . . . . 200

6.3 Universal domain library features . . . . . . . . . . . . . . . . . . . 204
6.4 Construction of the universal domain . . . . . . . . . . . . . . . . . 206

6.4.1 Building a sequence of increments . . . . . . . . . . . . . . . 207
6.4.2 A basis for the universal domain . . . . . . . . . . . . . . . . 210
6.4.3 Basis ordering relation . . . . . . . . . . . . . . . . . . . . . 212
6.4.4 Building the embedding and projection . . . . . . . . . . . . 212
6.4.5 Bifiniteness of the universal domain . . . . . . . . . . . . . . 214
6.4.6 Implementation in HOLCF . . . . . . . . . . . . . . . . . . . 215

6.5 Algebraic deflations . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.5.1 Limitations of ordinary deflations . . . . . . . . . . . . . . . 216
6.5.2 Type of algebraic deflations . . . . . . . . . . . . . . . . . . 218
6.5.3 Combinators for algebraic deflations . . . . . . . . . . . . . . 219
6.5.4 Type class of representable domains . . . . . . . . . . . . . . 220

6.6 The definitional Domain package . . . . . . . . . . . . . . . . . . . 222
6.6.1 Proving the isomorphism theorems . . . . . . . . . . . . . . 223
6.6.2 Proving the reach lemma . . . . . . . . . . . . . . . . . . . . 228
6.6.3 User-visible changes . . . . . . . . . . . . . . . . . . . . . . . 232

6.7 Unpointed predomains . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.8 Related work and conclusion . . . . . . . . . . . . . . . . . . . . . . 239



www.manaraa.com

vii

7 Case Study and Conclusion: Verifying Monads . . . . . . . . . . . 242
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.2 The lazy list monad . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7.2.1 Datatype and function definitions . . . . . . . . . . . . . . . 245
7.2.2 Verifying the functor and monad laws . . . . . . . . . . . . . 248
7.2.3 Applicative functors and laws for zip . . . . . . . . . . . . . 249
7.2.4 Verifying the applicative functor laws . . . . . . . . . . . . . 251
7.2.5 Coinductive proof methods . . . . . . . . . . . . . . . . . . . 254

7.3 A concurrency monad . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3.1 Composing monads . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.2 State monad transformer . . . . . . . . . . . . . . . . . . . . 260
7.3.3 Verifying a state/nondeterminism monad . . . . . . . . . . . 262
7.3.4 Resumption monad transformer . . . . . . . . . . . . . . . . 263
7.3.5 Defining the full concurrency monad . . . . . . . . . . . . . 266
7.3.6 Induction rules for indirect-recursive domains . . . . . . . . 267
7.3.7 Verifying functor and monad laws . . . . . . . . . . . . . . . 270
7.3.8 Verification of nondeterministic interleaving . . . . . . . . . 272

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.5 Comparison to Related Work . . . . . . . . . . . . . . . . . . . . . 279
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Appendix A: Index of Isabelle Definitions . . . . . . . . . . . . . . . . 296

Appendix B: Index of Isabelle Theorems . . . . . . . . . . . . . . . . . 299



www.manaraa.com

viii

LIST OF FIGURES

1.1 Haskell expressions with types . . . . . . . . . . . . . . . . . . . . . 4
1.2 A HOLCF ’11 theory file containing a formalization of lazy lists . . 12

2.1 HOLCF ’11 type class definitions . . . . . . . . . . . . . . . . . . . 29
2.2 Type class hierarchy of HOLCF ’11 . . . . . . . . . . . . . . . . . . 30
2.3 Simplification rules for admissibility predicate . . . . . . . . . . . . 34
2.4 Admissibility rules involving compactness . . . . . . . . . . . . . . . 35
2.5 Type definition with typedef, yielding Rep and Abs functions . . . . 37
2.6 Comparison of typedef, cpodef, and pcpodef commands . . . . . . 42
2.7 Selected theorems generated by cpodef for continuous function type 46
2.8 Properties of continuous functions, derived from cpodef theorems . 47
2.9 Lifted cpo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.10 Flat lifted types in HOLCF . . . . . . . . . . . . . . . . . . . . . . 52
2.11 Selected theorems generated by pcpodef for strict product type . . 56
2.12 Strict sum of pointed cpos . . . . . . . . . . . . . . . . . . . . . . . 59
2.13 Order, injectivity, distinctness, and strictness of sinl and sinr . . . . 61
2.14 Exponential blow-up using rule cont2cont LAM . . . . . . . . . . . . 64
2.15 Bottom-up algorithm for proving continuity, using forward proof . . 65
2.16 Efficient behavior of continuity introduction rule cont2cont LAM’ . . 68
2.17 Complete set of efficient cont2cont rules for LCF terms . . . . . . . 68

3.1 Input syntax for Fixrec package . . . . . . . . . . . . . . . . . . . 78
3.2 A Haskell function definition with nested patterns . . . . . . . . . . 85
3.3 Combinators for simple case expressions . . . . . . . . . . . . . . . 86
3.4 Function compiled to simple case expressions, with equivalent case

combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Maybe monad with fatbar and run operators . . . . . . . . . . . . . 87
3.6 Monadic match combinators like those used by original Fixrec . . 89
3.7 A function compiled using monadic match combinators . . . . . . . 89



www.manaraa.com

ix

3.8 Specification of continuation-based match combinators . . . . . . . 91
3.9 Definition of continuation-based combinators used by new Fixrec

package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.10 A function compiled using the continuation-based match combinators 92
3.11 Definitions of pattern match type and associated functions . . . . . 93
3.12 Definitions of pattern match combinators for basic HOLCF types . 95
3.13 Simplification rules for pattern match combinators . . . . . . . . . . 96
3.14 Differences between original (2004) and new versions of Fixrec . . 106

4.1 Map combinators for various HOLCF types . . . . . . . . . . . . . 120
4.2 Domain package implementation schematic . . . . . . . . . . . . . . 122
4.3 Input syntax for Domain package . . . . . . . . . . . . . . . . . . . 123
4.4 Record type for domain isomorphisms . . . . . . . . . . . . . . . . . 125
4.5 Record type for take functions and related theorems . . . . . . . . . 126
4.6 Extensible set of rules with the domain map ID attribute . . . . . . 127
4.7 Extensible set of rules with the domain deflation attribute . . . . . . 129
4.8 Record type for Domain package theorems related to take induction131
4.9 Definition and properties of decisive deflations . . . . . . . . . . . . 133
4.10 Record type for constructor-related constants and theorems . . . . . 134

5.1 The powerdomain laws in Haskell syntax . . . . . . . . . . . . . . . 155
5.2 Lifted two-element type, with upper, lower, and convex powerdomains165
5.3 Lifted three-element type, with upper and lower powerdomains . . . 165
5.4 Four-element lattice, with upper, lower, and convex powerdomains . 166
5.5 Powerdomain constants defined in HOLCF ’11 . . . . . . . . . . . . 167
5.6 Defining the upper powerdomain type by ideal completion . . . . . 187
5.7 Powerdomain lemmas with simple proofs by principal induction . . 189
5.8 Powerdomain lemmas with tricky proofs by principal induction . . . 190

6.1 Lemmas for composing ep-pairs . . . . . . . . . . . . . . . . . . . . 198
6.2 Embedding-projection pairs and deflations . . . . . . . . . . . . . . 199
6.3 A sequence of finite posets. Each Pn can be embedded into Pn+1;

black nodes indicate the range of the embedding function. . . . . . 207
6.4 The right (top) and wrong (bottom) way to order insertions. No

ep-pair exists between the 3-element and 4-element posets on the
bottom row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



www.manaraa.com

x

6.5 A sequence of four increments going from P2 to P3. Each new node
may have any number of upward edges, but only one downward edge.209

6.6 Embedding elements of P3 into the universal domain basis. . . . . . 211
6.7 Domain package implementation schematic . . . . . . . . . . . . . . 223
6.8 Extensible set of rules with the domain defl simps attribute . . . . . 224
6.9 Definition and basic properties of llist take function . . . . . . . . . 228
6.10 Extensible set of rules with the domain isodefl attribute . . . . . . . 230
6.11 Additional domain defl simps rules for predomains . . . . . . . . . . 238
6.12 Additional domain isodefl rules for predomains . . . . . . . . . . . . 238

7.1 Haskell class Functor, with functor laws . . . . . . . . . . . . . . . 245
7.2 Haskell class Monad, with monad laws . . . . . . . . . . . . . . . . . 245
7.3 Haskell Functor and Monad instances for lazy lists . . . . . . . . . . 246
7.4 HOLCF formalization of functor and monad operations for lazy lists 247
7.5 Haskell class Applicative, with applicative functor laws . . . . . . 250
7.6 Zip-style applicative functor instance for lazy lists . . . . . . . . . . 251
7.7 Haskell definition of state monad . . . . . . . . . . . . . . . . . . . 260
7.8 Haskell definition of state monad transformer . . . . . . . . . . . . 261
7.9 Haskell ChoiceMonad class, with instance for state monad transformer261
7.10 Functor, monad, and choice operations on state/nondeterminism

monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.11 Laws satisfied by operations on state/nondeterminism monad . . . . 264
7.12 Haskell definition of resumption monad transformer . . . . . . . . . 265
7.13 Haskell definition of nondeterministic interleaving operator . . . . . 266
7.14 Functor and monad laws for concurrency monad . . . . . . . . . . . 272
7.15 HOLCF definition of nondeterministic interleaving operator . . . . 273
7.16 Full proof of associativity for nondeterministic interleaving operator 276



www.manaraa.com

1

Chapter 1

INTRODUCTION

This is a thesis about program verification—how to make sure that your computer

programs do exactly what they are supposed to do. In other words, our goal is

to be able to specify a computer program, state properties about it, and then

construct proofs of those properties.

To approach this problem, we must start by deciding how to specify our com-

puter programs; that is, we must choose a programming language. For reasons

described below, this dissertation focuses on a common subset of a family of lan-

guages known as pure functional programming languages.

What is a pure functional programming language? Most programming lan-

guages include some notion of “functions”, although what that means can vary

significantly from one programming language to another. Generally a “function”

is a piece of code that takes some number of arguments as input, and then computes

a result that is passed back to the code that called it. How well this coincides with

the mathematical definition of “function” depends on the programming language.

Many commonly-used programming languages, including C and Java, are im-

perative languages. Functions in imperative languages consist of sequences of state-

ments, which are the basic building blocks of algorithms. A simple statement might

involve evaluating a mathematical expression that depends on the function argu-

ments. Other statements might have effects beyond just computing a result: They

might modify a value stored in memory, or get a character from user input or from



www.manaraa.com

2

a file. So if the same function is called twice with the same arguments, then it

might return a different result each time—we would say that such a function is not

pure.

In contrast, pure functional programming languages like Haskell [PJ03, Bir98]

have a focus on expressions—which are evaluated without side-effects—rather than

statements. In Haskell, all functions are pure: The result of a function depends

only on the values of its arguments, and evaluating a function has no observable

effect other than just computing the result value. In a pure functional programming

language, it makes sense to think of functions as real functions in the mathematical

sense: A mathematical relation between argument and result values is sufficient to

specify the behavior of a Haskell function.

Using a pure functional language makes a big difference when it comes to rea-

soning about equivalence of programs. In a C program, we might have a particular

function call add(3,5) that returns the value 8. Does this mean that the program

expression “add(3,5)” is equivalent to the expression “8”? Not necessarily—the

function add might have other side-effects, such as writing to a global variable,

printing output to the screen, or writing to a file. So replacing one expression

with the other could change the meaning of the surrounding program—we would

say that such a function call is not referentially transparent. In contrast, every

Haskell function call is referentially transparent: Replacing a function call with its

return value always yields an equivalent Haskell program—just as in arithmetic,

replacing an occurrence of (3+5) with 8 always yields an equivalent mathematical

expression. Thus we can reason about Haskell programs just as we might reason

about mathematical formulas: Within a Haskell program, we are free to replace

function calls with their values, unfold function definitions, or rewrite expressions

using algebraic laws satisfied by the relevant functions.

In the sense that they permit equational reasoning, pure functional languages

like Haskell are the easiest to work with. But in another sense, the verification



www.manaraa.com

3

problem for Haskell is the most challenging verification problem of all, because it is

the most general. Haskell-like languages have several core features that make them

useful for embedding other languages, such as higher-order functions (i.e., functions

that take other functions as arguments), algebraic datatypes, polymorphism, and

recursion [Hud98]. Historically, many of these language features originate with the

Iswim language, from Landin’s seminal 1966 paper “The Next 700 Programming

Languages” [Lan66]. Iswim was designed specifically to be expressive enough

to unify a large class of existing programming languages. The expressiveness of

Haskell makes it a worthwhile language to study, because if you know how to

reason about Haskell, then you know how to reason about many other languages

as well.

1.1 INFORMAL REASONING WITH HASKELL

1.1.1 Haskell terms and types

Haskell [PJ03, Bir98] is a general-purpose programming language based on a typed

lambda calculus. The full language includes many features (such as type classes)

that will not be relevant for most of this dissertation. Accordingly, this section will

focus on just a few basic features: functions, the type system, algebraic datatypes,

and recursive definitions.

As it is based on the lambda calculus, Haskell has syntax for function appli-

cation, written “f x”; and function abstraction, written “\x -> t”.1 Function

application associates to the left, so “f x y” means “(f x) y”. In Haskell, func-

tions with symbol names like “(+)” use infix syntax, so that “f x + y” means

“(+) (f x) y”. Nested abstractions also have special syntax: “\x y -> t” is

shorthand for “\x -> \y -> t”.

1“\” is Haskell’s ASCII approximation of “λ”, the usual symbol for function abstraction in
the lambda calculus.



www.manaraa.com

4

3 :: Integer
(+) :: Integer -> Integer -> Integer

(\x -> x + 3) :: Integer -> Integer
(\f -> f 3) :: (Integer -> a) -> a

(\f x -> f (f x)) :: (a -> a) -> a -> a
[3, 5] :: [Integer]

(\x -> [x, x]) :: a -> [a]
(\xs -> 3 : xs) :: [Integer] -> [Integer]

(\xs -> case xs of [] -> 3; y : ys -> 4) :: [a] -> Integer

Figure 1.1: Haskell expressions with types

As a typed language, every expression in a Haskell program belongs to a type;

we write x :: T to assert that expression x has type T. Haskell types include base

types like Integer, function types like Integer -> Integer, and datatypes like

[Integer] (read as “list of integer”). (The function arrow is right-associative, so

the two-argument function type A -> B -> C really means A -> (B -> C), a func-

tion that returns a function.) Haskell also includes polymorphic types like a -> a,

which mention type variables like “a” (type variables are distinguished from other

Haskell types by being in lower-case). A polymorphic type can be instantiated by

uniformly substituting types for type variables; for example, Integer -> Integer

is an instance of the polymorphic type a -> a. Some examples of Haskell expres-

sions with their types are shown in Figure 1.1.

Haskell programmers can define new types using datatype declarations. For ex-

ample, the standard Haskell library contains the declaration data Bool = False |

True, which introduces a new type Bool, with constructors False :: Bool and

True :: Bool.

A slightly more complicated example is the following binary tree datatype.

Note that the type being defined also occurs on the right-hand side, making this

a recursive datatype.



www.manaraa.com

5

data Tree = Leaf Integer | Node Tree Tree

This introduces a new datatype Tree, with constructor functions Leaf :: Integer

-> Tree and Node :: Tree -> Tree -> Tree. Inhabitants of type Tree include

expressions like Leaf 3 or Node (Leaf 2) (Node (Leaf 3) (Leaf 4)).

Datatypes may also have type parameters. Below is a variation of the Tree

datatype that is parameterized by the type of values contained in the leaves:

data Tree’ a = Leaf’ a | Node (Tree’ a) (Tree’ a)

With this new Tree’ datatype, the constructor functions now have polymorphic

types. This means we can use the same constructor functions to build different trees

with elements of different types. For example, we have Leaf’ 5 :: Tree’ Integer

and Leaf’ True :: Tree’ Bool.

Haskell’s list type is an ordinary datatype, but with some special syntax. It

could be defined by the declaration data [a] = [] | a : [a]. It has two poly-

morphic constructors, [] :: [a] (called “nil”) and (:) :: a -> [a] -> [a]

(called “cons”, which is short for “constructor”). Cons is written infix, and as-

sociates to the right. The list syntax “[x, y, z]” stands for “x : y : z : []”.

Using pluralized names like “xs” or “ys” for list variables is a common convention

among Haskell programmers; this convention is also followed in this document.

1.1.2 Equational reasoning

The simplest kind of proofs about programs are done by equational reasoning:

unfolding definitions, performing reduction steps—in general, just replacing equals

by equals. Many properties about programs can be proven correct using equational

reasoning alone. For example, by unfolding and refolding the definitions, we can

show that the function composition operator (.) is associative:

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)



www.manaraa.com

6

Theorem 1.1.1. For all f, g, h, and x, ((f . g) . h) x = (f . (g . h)) x.

Proof. We proceed by equational reasoning, using the definition of (.).

((f . g) . h) x
= (f . g) (h x)
= f (g (h x))
= f ((g . h) x)
= (f . (g . h)) x

Properties proved by equational reasoning are easy to trust, because in a pure

language like Haskell, replacing equals by equals is universally valid. There are

no subtle side conditions or restrictions on when and where you are allowed to

perform an equational rewriting step. This means that we can achieve a high level

of assurance even for informal pencil-and-paper proofs by equational reasoning.

1.1.3 Proofs by induction

Equational rewriting is not sufficient to prove all properties we might be interested

in. Many properties, especially those related to recursive functions, also require

the use of induction. For example, we can define a recursive function map that

applies the given function f to every element of a list. Then we can prove that

mapping the composition of two functions over a list is the same as mapping one,

then mapping the other.

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = (f x) : (map f xs)

Theorem 1.1.2. For any f, g, and xs, map (f . g) xs = map f (map g xs).

We proceed by induction over xs. For the base case, we show that the proposition

holds for xs = [], using the definition of map:

map (f . g) [] = [] = map f [] = map f (map g [])



www.manaraa.com

7

For the induction step, we assume that the proposition holds for an arbitrary xs,

and then show that the proposition must also hold for x : xs.

map (f . g) (x : xs)
= ((f . g) x) : (map (f . g) xs) (Unfolding map)
= (f (g x)) : (map (f . g) xs) (Unfolding (.))
= (f (g x)) : (map f (map g xs)) (Inductive hypothesis)
= map f ((g x) : (map g xs)) (Folding map)
= map f (map g (x : xs)) (Folding map)

This may look like a thorough proof, and in some functional languages it would

indeed be a valid proof. But in Haskell, there are some extra side conditions

that we must check, due to a certain language feature of Haskell—laziness. Lazy

functional programming languages are pure functional languages that implement a

particular evaluation order. Arguments to functions are not necessarily evaluated

before a function is called; instead, the evaluation of each argument is deferred

until the point where its value is actually needed. (Conversely, strict functional

languages evaluate arguments before every function call.) In a lazy language, we

must consider non-termination in more contexts than we would in a strict language.

1.1.4 Bottoms and partial values

The presence of laziness and non-termination makes reasoning a bit more compli-

cated. In particular, we will need to extend our induction rule for Haskell lists to

explicitly consider non-termination.

P ([]) ∀ x xs. P (xs) −→ P (x : xs) . . .?

∀ xs. P (xs)
(1.1)

To illustrate this, we will consider a property of a function that reverses the

elements of a list. The implementation of rev also uses a helper function snoc

(“cons” spelled backwards) which adds a single element to the end of a list.



www.manaraa.com

8

rev :: [a] -> [a]
rev [] = []
rev (x : xs) = snoc (rev xs) x

snoc :: [a] -> a -> [a]
snoc [] y = y : []
snoc (x : xs) y = x : snoc xs y

We might like to prove, for example, that reversing a list twice will give back the

original list. Since rev is defined in terms of snoc, we might start by attempting

to prove the following proposition as a lemma:

Proposition 1.1.3. For all xs and y, rev (snoc xs y) = y : rev xs.

We proceed by induction over xs. For the base case, it is straightforward to show

that the proposition holds for xs = [] (both sides evaluate to [y]). The x : xs

case also goes through just fine. However, the property does not hold in general

in Haskell, because it does not hold in the case where the evaluation of xs fails to

terminate.

We say that a Haskell expression is undefined if its evaluation leads to non-

termination. Any undefined Haskell expression can be treated as equivalent to the

canonical Haskell function undefined, which goes into an infinite loop if we ever

try to evaluate it. In mathematical notation, the value denoted by undefined is

written ⊥ (pronounced “bottom”).

undefined :: a
undefined = undefined

To cover the possibility of non-termination, we can add a third case to our

inductive proof of Theorem 1.1.2, where xs = undefined. The proof of this case

relies on the fact that map is strict in its second argument, i.e. map f undefined =

undefined. This follows from the fact that evaluating map f xs immediately

requires xs to be evaluated.



www.manaraa.com

9

map (f . g) undefined
= undefined
= map f undefined
= map f (map g undefined)

Even after proving the undefined case, we are still not quite done with the

proof. There is another, more subtle “admissibility” condition we must verify.

1.1.5 Infinite values and admissibility conditions

In addition to undefined values, laziness also introduces the possibility of infinite

values. For example, in Haskell we can define an infinite list of booleans:

trues :: [Bool]
trues = True : trues

In a strict functional language, this definition would yield trues = undefined.

However, since the constructor function (:) is not strict in Haskell, the circular

definition of trues is only evaluated as far as required by other functions that

examine the list—it does not immediately go into an infinite loop. (Of course,

other functions taking trues as input might still loop, for example if they try to

find the end of the list!)

The presence of infinite lists means that our induction principle for lists will

need another side condition. We can demonstrate this need by considering an

erroneous proof by induction.

take :: Integer -> [a] -> [a]
take n [] = []
take n (x : xs) = if n > 0 then take (n - 1) xs else []

Using take we can define a finiteness predicate for lists, where xs is finite if there

exists an integer n such that xs = take n xs. Now we can write down an inductive

“proof” that all lists are finite: All three cases (undefined, [], and x : xs) are



www.manaraa.com

10

provable. However, the list trues does not satisfy the finiteness property; where

did the proof go wrong?

It turns out that in lazy functional languages like Haskell, where datatypes

may contain infinite values, the induction scheme for lists is only valid for the

so-called “admissible” predicates. The map-compose property in Theorem 1.1.2 is

admissible, while the finiteness predicate is not. (The definition and properties of

admissibility will be covered in depth in Chapter 2.)

Already, we have noticed that proofs involving induction are much more subtle

and error-prone than proofs using only equational reasoning. And these are not

complicated examples—lists are a simple recursive datatype, and map and (.) have

short definitions. As we move toward larger, more complex definitions that use

more interesting forms of recursion, it becomes apparent that pencil-and-paper

proofs will no longer be sufficient. To get a reasonable level of confidence, we will

need completely formal, machine-checked proofs.

1.2 A PREVIEW OF FORMAL REASONING WITH HOLCF ’11

Traditionally, most mathematics is done with informal reasoning: People write

proofs, which are checked by having other people read and understand them. Many

details may be omitted, as long as enough are included to convey an understanding

of the proof. In contrast, formal proofs are completely rigorous, and omit nothing.

Checking a formal proof does not rely on understanding; rather, it consists of

mindlessly checking that every logical inference in the proof is valid. Working with

formal proofs by hand is generally impractical; however, computers are perfectly

suited to the repetitive tasks of constructing and checking formal proofs.

HOLCF ’11 (usually pronounced “hol-cee-eff”) is a system for doing formal

reasoning about functional programs. It is implemented as an extension of Is-

abelle [NPW02], which is a generic interactive theorem prover, or proof assistant.



www.manaraa.com

11

A proof assistant is a piece of software that lets users state definitions and the-

orems (expressed in a suitable logical formalism) and create formal proofs. The

proof assistant facilitates this task by checking logical inferences, keeping track of

assumptions and proof obligations, and automating easy or repetitive subproofs.

Users interact with HOLCF ’11 by composing and stepping through a theory

file. Figure 1.2 shows an example theory file with a formalized version of the

map-compose theorem from the previous section. The file starts with a theory

name and an imports declaration specifying the standard HOLCF theory library.

HOLCF ’11 provides commands that simulate Haskell-style definitions: domain

for recursive datatypes and fixrec for recursive functions. Users state theorems

with the lemma command, and prove them by writing proof scripts consisting of

one or more proof tactics. Isabelle lets users step individually through each apply

command in a proof script, displaying in a separate output window the remaining

subgoals that still need to be proved. When all subgoals have been discharged,

Isabelle prints the message, “No subgoals!” At this point the done command

completes the proof.

HOLCF ’11 provides automation so that users can prove many theorems in just

one or two steps. In the informal proof of the previous section, the strictness of

map was established by an appeal to intuition about evaluation order; in HOLCF

’11 the corresponding lemma map strict is rigorously proved in one step with the

help of the fixrec simp tactic (documented in Chapter 3). The informal inductive

proof of the map-compose property required a moderate amount of equational

reasoning, but the automation in HOLCF ’11 lets us prove it in just two steps:

First, the induct xs tactic applies the induction rule for the lazy list type, yielding

separate subgoals for Nil, Cons, ⊥, and the admissibility check. The simp all tactic

then uses Isabelle’s simplifier to discharge all remaining subgoals by equational

rewriting. Because it is declared with the [simp] attribute, the simplifier uses the

previous lemma map strict as a rewrite rule in this proof.



www.manaraa.com

12

theory LazyList imports HOLCF begin

domain ’a List = Nil | Cons (lazy "’a") (lazy "’a List")

fixrec map :: "(’a → ’b) → ’a List → ’b List"
where "map·f·Nil = Nil"
| "map·f·(Cons·x·xs) = Cons·(f·x)·(map·f·xs)"

lemma map strict [simp]: "map·f·⊥ = ⊥"
apply fixrec simp
done

lemma map map: "map·f·(map·g·xs) = map·(Λ x. f·(g·x))·xs"
apply (induct xs)
apply simp all
done

end

Figure 1.2: A HOLCF ’11 theory file containing a formalization of lazy lists

In summary, we can see that using HOLCF ’11 has some advantages over in-

formal reasoning. First, note that HOLCF ’11 is sufficiently expressive to reason

about functional programs: Users can directly specify functional programs and

theorems about them, using a notation that is similar to a Haskell-like functional

programming language. Second, HOLCF ’11 has automation: With its proof tac-

tics, users can write concise proof scripts without having to devote attention to

routine proof details. Finally, HOLCF ’11 provides confidence: It is built within

a completely formal and rigorous theorem proving system, preventing errors and

guaranteeing the soundness of the results.



www.manaraa.com

13

1.3 HISTORICAL BACKGROUND

HOLCF ’11 represents the latest step in a long line of research, starting with the

work of Dana Scott and Robin Milner in the late 1960s and early 70s. Their

research program started with Scott’s logic of computable functions (LCF), which

formed the basis for Milner’s original LCF theorem prover. Since the first version

of the LCF system, there have been some notable long-term trends in interactive

theorem proving: Proof assistants have gradually become more powerful and more

automated; at the same time there has been a continued effort to minimize the

amount of code and the number of axioms that must be trusted. For a more

in-depth account, see the excellent historical overview by Mike Gordon [Gor00].

1.3.1 Logic of computable functions

The logic of computable functions was designed by Dana Scott in 1969 for reason-

ing about functional programs [Sco93]. The logic comprises two syntactic classes

of entities: terms and formulae. The language of terms is a typed lambda calculus,

similar to Haskell—terms are built from variables, constants, lambda abstraction

and function application. In addition to function types, LCF also has types o

and ι of truth values and numbers, corresponding to the Haskell types Bool and

Integer. (It is straightforward to extend LCF with additional base types, if de-

sired.) Constants in LCF include the truth values T : o and F : o, a bottom value

⊥α : α for every type α, a conditional (if-then-else) operator Cα : o→ α→ α→ α,

and a fixed point combinator Yα : (α→ α)→ α for expressing recursive functions.

The language of LCF formulae includes connectives of first-order logic (∧, −→,

∀), and also (in)equalities between terms, written t v u and t = u. The logical

inference rules for LCF include the usual rules of first-order logic, plus a few axioms

about inequalities: (v) is reflexive, antisymmetric, transitive, has ⊥α as a minimal



www.manaraa.com

14

value, and also satisfies the following monotonicity property.

f v g x v y

f(x) v g(y)
(1.2)

LCF also axiomatizes a rule for proofs by cases on type o, and defining equations

for the conditional operator. For the fixed point operator applied to a function

f : α → α, LCF gives us an unfolding rule f(Yα(f)) = Yα(f) and a fixed-point

induction principle:
Φ[⊥α] ∀x. Φ[x] −→ Φ[f(x)]

Φ[Yα(f)]
(1.3)

Fixed-point induction is valid for any formula Φ[x] that satisfies a syntactic ad-

missibility test for the variable x.

The axioms of LCF were not really invented, but rather discovered: The logic

was designed with a particular model in mind, and the various LCF axioms came

from properties that could be proven about the model [Sco93]. The model of

LCF is based on domain theory, a field of mathematics also pioneered by Dana

Scott [GS90]. Each LCF type is modeled as a domain (a kind of complete partial

order) and LCF functions are modeled as continuous functions between domains.

Domain theory also provides a least fixed-point combinator, used to model Yα.

Keep in mind, however, that while domain theory justifies the rules, it is not part

of the formal system; LCF is really just a collection of abstract syntactic rules for

manipulating formulae.

1.3.2 LCF style theorem provers

In the early 1970s, a few years after LCF was introduced, a proof assistant was

developed for it by Robin Milner at Stanford; this first version was known as

Stanford LCF. The prover implemented all the formal rules of the LCF logic,

providing a programmable interface with which users could interactively prove

theorems.



www.manaraa.com

15

A few years later while at Edinburgh, Milner created a new version called

Edinburgh LCF [GMW79], which was the first proof assistant to be implemented

in what became known as the “LCF style”. In an LCF style prover, all the code

for the logical inference rules is collected in a proof kernel, which implements

an abstract type thm of theorems. For example, one of the kernel functions in

Edinburgh LCF implements the modus ponens rule: Given a theorem P −→ Q

and a theorem P ′, after checking that P and P ′ are the same formula, it creates a

theorem Q. As an abstract type, the representation of a thm is not visible to any

code outside the kernel; only the kernel can create values of type thm. Other code

cannot forge theorems, but can only create them via the operations exported by

the kernel.

The LCF style requires an implementation language that enforces abstract

types. Such languages were not commonplace in the 1970s: In order to build

Edinburgh LCF, Milner simultaneously developed the functional language ML for

this purpose [GMW79]. ML eventually became a widely-used general purpose pro-

gramming language, and influenced many later functional programming languages,

including Haskell.

In an LCF style theorem prover, users can freely extend the system by adding

more code outside the kernel, without risking the soundness of the system. Even if

the new user code contains bugs, the worst that can happen is that proofs relying

on that code might fail; bugs in non-kernel code cannot be exploited to produce

invalid theorems.

The LCF architecture makes it possible to write proof assistants that include

very large, sophisticated tools for constructing proofs, yet require only a small

amount of trusted code. For example, all versions of LCF have included a simplifier

for doing proofs by rewriting with conditional rewrite rules. While the simplifier

of Edinburgh LCF was still coded into its proof kernel, its successor Cambridge

LCF (developed primarily by Paulson in the early 1980s) took advantage of the



www.manaraa.com

16

LCF architecture by implementing the simplifier outside the kernel. This yielded a

system that was just as powerful and more flexible, yet with a significantly smaller

trusted code base [Pau87].

1.3.3 Higher order logic and the definitional approach

The proof assistants that succeeded Cambridge LCF switched from LCF to a

new logic—higher order logic, also known as HOL—primarily due to a new focus

on hardware-related verification tasks that did not require features of LCF like

general recursion or fixed point induction. Multiple lines of provers for HOL have

been developed since the late 1980s, including Gordon’s HOL series (starting with

HOL88 and HOL90, leading up to the modern HOL4) and Paulson’s Isabelle/HOL

theorem prover.

The syntax and type system of HOL are similar to LCF, but instead of inter-

preting types as domains, HOL types are modeled as ordinary sets. Accordingly,

HOL drops some of LCF’s features: There is no special bottom value (⊥) at every

type, nor is there a generic fixed point combinator. However, HOL has an advan-

tage in expressiveness over LCF, because it is higher order: That is, it can express

quantification over formulas and predicates (which in HOL are simply terms with

types like bool and ’a ⇒ bool).

As new proof assistants started using higher order logic, they also began to

shift from an axiomatic to a definitional approach to building theories. “The HOL

system, unlike LCF, emphasises definition rather than axiom postulation as the

primary method of developing theories. Higher order logic makes possible a purely

definitional development of many mathematical objects (numbers, lists, trees etc.)

and this is supported and encouraged.” [Gor00, §5.2]

The obvious problem with axioms is that the whole set of them, taken together,

must be trusted to be consistent. When users are adding new arbitrary axioms

all the time, it is hard to maintain a high level of confidence in the soundness of



www.manaraa.com

17

the system. On the other hand, the definitional approach prescribes certain forms

of “safe” axioms for introducing new constants and types, which are known to

preserve soundness—users can freely add such definitional axioms without worry.

For defining constants, it is safe to introduce axioms of the form c = t, where

c is a new constant and t is a closed term that does not mention c. For exam-

ple, in Isabelle/HOL, the existential quantifier Ex :: (’a ⇒ bool) ⇒ bool is defined

by declaring the definition axiom Ex = (λP. ∀Q. (∀x. P x −→ Q) −→ Q)). The

standard rules for reasoning about existentials can be derived from this definition.

Contrast this with Cambridge LCF, where existential quantification is hard-coded

into the formula language, and all the rules about it are axioms. (Note that this

definition of Ex could not even be expressed in the first-order LCF, since it has a

higher-order type and involves quantification over formulae.)

The safe way to introduce a new type in HOL is to identify values of the new

type with some subset of the values of a pre-existing type. (This kind of type

definition is discussed further in Chapter 2.) For example, in Isabelle/HOL, the

product type ’a × ’b is not primitive; it is defined in terms of a subset of type

’a ⇒ ’b ⇒ bool. Each pair (x, y) corresponds to the binary predicate that is true

only when applied to x and y, and nowhere else. Compare this with the treatment

of pairs in LCF: The properties of the LCF product type and PAIR constructor are

all given by axioms.

Using these low-level definitional principles for constants and types, it is possi-

ble to build high-level derived definition packages. Generally, a definition package

takes a user-supplied specification of a type or constant, internally translates it

into a low-level definition, and then derives high-level theorems about it. For ex-

ample, Melham extended HOL88 with a definitional datatype package: Given a

(possibly recursive) datatype specification, it would define the type, along with

constructor functions and a recursion combinator, and derive an induction rule

and other theorems [Mel89]. A similar package was developed for Isabelle/HOL



www.manaraa.com

18

soon afterwards [BW99]. Another classic example is the Recdef package, which

defines functions using well-founded recursion [Sli96]. Here the user supplies a set

of recursive function equations and a proof of termination; the package internally

creates a non-recursive low-level definition, and then proves the given equations

as theorems. Packages like these provide a lot of power and automation to users,

yet because they adhere to the definitional approach, they guarantee soundness

without users having to trust any new code.

1.3.4 Isabelle/HOLCF

The previous section showed some of the benefits of higher order logic over LCF,

particularly the definitional approach for building trustworthy theorem proving

systems. But HOL still has one drawback compared to LCF: HOL does not have

a general fixed point combinator, so it does not work as well as LCF for reasoning

about functional programs with general recursion. Isabelle/HOLCF is the result

of an attempt to augment HOL with some features of LCF, so that users can do

LCF-style reasoning about LCF terms in Isabelle/HOL.

What exactly is HOLCF? It is not actually a separate logic from HOL, in the

sense that LCF and HOL are separate logics. Rather, it is a model of the LCF

logic, embedded in Isabelle/HOL. To show exactly what it means for one logic to

be embedded in another, it may be helpful to consider a much simpler example.

Example: Embedding LTL in HOL. Linear temporal logic (LTL) is a formal-

ism for expressing and reasoning about propositions that depend on time, where

time progresses in discrete steps. LTL includes standard logical connectives (¬, ∧,

∨) and also some modal operators: ©P means that predicate P holds at the next

time step, and P U Q means that P holds at every time step until Q becomes true

at some point in the future.

In order to reason about LTL propositions, one possibility would be to write



www.manaraa.com

19

an interactive theorem prover that directly implements the LTL logic. The basic

logical connectives and modal operators could be implemented as primitives, and

each of the logical inference rules for LTL could be coded into the proof kernel.

Another alternative is to embed LTL inside a more expressive system, such as

Isabelle/HOL. To implement the embedding, we fix a model of LTL, and then

define the LTL connectives in Isabelle/HOL in terms of their meanings in the

model.

The usual model for LTL interprets propositions as infinite sequences of truth

values, i.e. functions of type nat ⇒ bool. In this model, an LTL proposition is

“true” if it is true now, i.e. at time zero. Logical connectives of LTL are modeled

by combining sequences pointwise; the next operator shifts sequences by one.

type synonym ltl prop = "nat ⇒ bool"

definition TrueLTL :: "ltl prop ⇒ bool" ("|=")
where "|= P = P 0"

definition AND :: "ltl prop ⇒ ltl prop ⇒ ltl prop" (infixr "f" 55)
where "(P f Q) = (λn. P n ∧ Q n)"

definition NEXT :: "ltl prop ⇒ ltl prop" ("©")
where "©P = (λn. P (n + 1))"

Similarly implementing all of the LTL connectives as definitions makes it pos-

sible to express any LTL proposition as a formula in Isabelle/HOL. To support

LTL proofs, we can go on to prove each LTL inference rule as a theorem about the

model of LTL. For example:

lemma AND intro:
assumes "|= P" and "|= Q" shows "|= (P f Q)"

lemma NEXT AND:
assumes "|= (©P f ©Q)" shows "|= (©(P f Q))"

A theory file could be created with proof scripts for both of these lemmas. LTL

proofs could then be replayed in the Isabelle/HOL model of LTL using these rules.



www.manaraa.com

20

Embedding LCF in HOL. HOLCF is an embedding of LCF in Isabelle/HOL—

essentially a formalization of a model of LCF. Each of the base types and type con-

structors in LCF’s type system corresponds to a type definition in Isabelle/HOLCF.

Each primitive constant (T, F, ⊥α, Cα, Yα) and term constructor (application and

abstraction) in LCF’s term language is defined as a constant in Isabelle/HOLCF,

allowing any LCF term to be encoded as an Isabelle term. The formula language

of LCF is similarly mapped onto Isabelle terms of type bool, so that any LCF

formula can be expressed in Isabelle.

As mentioned earlier, the standard model of LCF uses domain theory: LCF

types are modeled as complete partial orders (cpos); the function space of LCF

is modeled as the continuous function space. Formulae are modeled in the Is-

abelle/HOL type bool. LCF terms are modeled using domain theory: Each LCF

type is modeled in HOL as a type with a cpo structure. The LCF function type

constructor is modeled in HOLCF as a new continuous function type constructor,

which is separate from the existing Isabelle/HOL function type. Things like ad-

missibility (which is a primitive concept hard-wired into the kernel of the original

LCF provers) are defined as predicates in HOLCF.

Versions of HOLCF. The first version of HOLCF (which we will call HOLCF

’95) was created in Munich by Regensburger [Reg94, Reg95] in the mid 1990s. In

terms of features, HOLCF ’95 attempted to precisely replicate the implementation

details of Cambridge LCF: In particular it defines all of the same type constructors

and operations that were provided by Cambridge LCF.

Over the next few years, HOLCF was extended by various members of the Mu-

nich group [MNOS99], resulting in a version we will call HOLCF ’99. This version

included one new feature in particular that brought big gains in expressiveness

and automation, greatly expanding the set of programs that HOLCF could reason



www.manaraa.com

21

about: the Domain package [Ohe97], which provides a high-level datatype defi-

nition command for recursive datatypes. It is similar to the datatype packages in

Gordon HOL and Isabelle/HOL, except that it defines cpos with bottom values. It

automates the same process by which Edinburgh and Cambridge LCF users would

axiomatize new datatypes. Unfortunately, the HOLCF ’99 Domain package takes

a step backward in terms of the trusted code base: Since it is axiomatic rather

than definitional, the soundness of HOLCF ’99 depends on the correctness of much

of the Domain package code.

In the late 2000s, HOLCF was thoroughly revised and extended by the present

author. HOLCF ’11 is the latest version of HOLCF; it is included as part of the

2011 release of the Isabelle theorem prover.

1.4 THESIS STATEMENT

The original HOLCF ’95 consisted of a domain-theoretic model of the basic LCF

logic in Isabelle/HOL. HOLCF ’99 essentially marked a move from plain LCF to a

more expressive logic of LCF+datatypes. However, HOLCF ’99 still uses the same

domain-theoretic model as HOLCF ’95, which does not actually provide meanings

for recursive datatypes—axioms are used to fill the gap.

The aim of HOLCF ’11 is to take advantage of further developments in domain

theory to build a more complete model of LCF, including recursive datatypes. The

claim of this thesis is that with the help of some new concepts from domain theory,

HOLCF ’11 advances the state of the art in formal program verification by offering

an unprecedented combination of expressiveness, automation, and confidence.

Expressiveness. HOLCF ’11 provides definition packages that allow users to

directly formalize a wide variety of functional programs. Compared to earlier

versions of HOLCF, the tools in HOLCF ’11 have more capabilities, including

support for new kinds of function and datatype definitions. The new tools



www.manaraa.com

22

also offer better scalability for larger, more complex datatypes and programs.

Automation. With HOLCF ’11, users can verify simple programs in a direct,

highly-automated way. Programs that previous systems like HOLCF ’99

could verify are now more straightforward to define, and have shorter, more

automatic proofs. The improvements in automation also make it possible

to complete complicated proofs of theorems for which other reasoning tech-

niques would be impractical.

Confidence. HOLCF ’11 provides a strong argument for correctness, because

its implementation is purely definitional. Our motto: “No new axioms!”

HOLCF ’11 is a conservative extension of Isabelle/HOL, not requiring a

single new line of trusted code.

1.5 OUTLINE

The remainder of this dissertation is organized as follows.

Chapter 2 This covers the formalization of the core parts of HOLCF ’11. It

includes all of the domain-theoretic concepts and type constructors that were

already present in earlier versions of HOLCF. It also describes the Cpodef

package that is used to help define types in HOLCF ’11, and how automation

works for proofs of continuity and admissibility.

Chapter 3 This chapter describes the Fixrec package, which lets users define

recursive functions with pattern matching. It covers both usage and imple-

mentation.

Chapter 4 This chapter covers the usage and implementation of the Domain

package, which is used to define recursive datatypes.

Chapter 5 This documents the HOLCF ’11 powerdomain libraries, which are

used for reasoning about nondeterministic programs. This chapter also de-

scribes the new infrastructure for ideal completion, a general domain-theoretic



www.manaraa.com

23

method for constructing types in HOLCF ’11.

Chapter 6 This chapter explains the additions to the HOLCF ’11 Domain pack-

age that allow it to be purely definitional. The centerpiece of this chapter

is the construction of a universal domain—a single cpo with a structure rich

enough to encode any recursive datatype.

Chapter 7 The final chapter provides evidence for the claims in the thesis state-

ment, by demonstrating the capabilities of HOLCF ’11 on some real examples

and making comparisons to related work.

Readers who want to learn to use HOLCF ’11, but are not interested so much in

the implementation, may want to focus on certain parts of this document. HOLCF

’11 users should be able to safely skip the section about Cpodef in Chapter 2,

the implementation sections of Chapters 3 and 4, and the second half of Chapter 5

(from ideal completion onwards). Most of Chapter 6 can be skipped, although

HOLCF ’11 users should at least know about the existence of the domain and

predomain type classes (Sections 6.5.4 and 6.7).

The proof methods used in the case studies of Chapter 7 may be of interest, not

just to practitioners of formal reasoning in HOLCF ’11, but to anyone interested

in verification of functional programs in general, formal or otherwise.



www.manaraa.com

24

Chapter 2

BASIC DOMAIN THEORY IN HOLCF

2.1 INTRODUCTION

Isabelle/HOLCF is a library of domain theory, formalized within the logic of

Isabelle/HOL. It is specifically intended to support denotational-style reasoning

about recursive functional programs. It is specifically not about doing abstract

mathematics for its own sake; HOLCF only includes those parts of domain theory

that are useful for reasoning about computation.

As was described in the first chapter, HOLCF has undergone various revisions

during its history: The original version (HOLCF ’95) was created by Regens-

burger [Reg94, Reg95] as a way to reason about the LCF logic [Pau87] within

Isabelle/HOL. The version from a few years later (HOLCF ’99) was the next

important milestone, representing the work of several contributors [MNOS99].

HOLCF ’99 offered improvements to the “core” of HOLCF—i.e., the parts that

implemented the basic LCF functionality—and also introduced completely new

functionality with the Domain package. The most recent version (HOLCF ’11)

includes many new improvements and extensions by the present author, covering

both the LCF core and the various definition packages. This chapter will describe

the new implementation of the core parts of HOLCF ’11.

Contributions. Although much of the core of HOLCF ’11 is quite similar to

HOLCF ’99, there are some significant recent improvements as well. The primary

original contributions described in this chapter are mostly concerned with proof



www.manaraa.com

25

automation:

• Using compactness, admissibility can now be proven automatically for a

larger set of predicates.

• The new Cpodef package greatly reduces the burden of constructing new

cpo types.

• New tactics for continuity proofs make interactive reasoning faster and fea-

sible for larger programs.

Overview. The remainder of this chapter starts by formalizing abstract concepts

from domain theory, such as complete partial orders, continuity and admissibility

(§2.2). The following two sections are devoted to the concrete instantiations of

these concepts: After introducing a new type definition package for cpos (§2.3),

we define several type constructors, along with related operations for each (§2.4).

Next is a discussion of proof automation for continuity (§2.5), followed by an

evaluation and comparison with related work (§2.6).

Notation. Many definitions and theorems in this document are presented using

Isabelle syntax, which is typeset in a sans-serif font. Isabelle generally uses stan-

dard mathematical notation for operators and logical connectives. However, due

to Isabelle’s distinction between object-logic and meta-logic, there are two ways

to write some propositions: P −→ Q or P =⇒ Q for implication, ∀x. t or ∧x. t

for universal quantification, and x = y or x ≡ y for equality. In general, readers

can safely ignore the distinction between object- and meta-logic connectives. The

syntax JP; QK =⇒ R represents the nested implication P =⇒ Q =⇒ R (logical im-

plication associates to the right). The bi-implication P ←→ Q is alternative syntax

for P = Q on booleans.

Function application in Isabelle uses the syntax f x, like in Haskell or ML;

application associates to the left, so f x y denotes (f x) y. Function abstraction uses



www.manaraa.com

26

lambda notation (λx. t) and may be nested: (λx y. t) is shorthand for (λx. λy. t).

Function abstraction is the only form of variable binding in Isabelle: Other binding

constructs like (∀x. t) are really abbreviations for terms like All (λx. t), where All

is a higher-order function of type (’a ⇒ bool) ⇒ bool.

Type constructors are generally written postfix, as in int list, although some

type constructors have infix syntax, like int × int for the product type or int ⇒ int

for the function space (both type constructors group to the right). Type variables

are distinguished by a leading tick mark, as in ’a.

For introducing new types, the type synonym command introduces type ab-

breviations, and datatype defines inductive datatypes, much like in Haskell or ML.

Non-recursive constant definitions may be introduced with definition; the primrec

command defines primitive-recursive functions over datatypes.

In Isabelle theory files, theorems to be proved are stated using the lemma com-

mand. The command is followed by a theorem name, an optional list of theorem

attributes (for example, the [simp] attribute adds the theorem to the simplifier),

and a quoted proposition.

lemma example theorem [simp]:
"0 < y =⇒ (x::int) < x + y"

Isabelle also supports an alternative form with explicit fixed variables and named

assumptions:

lemma example theorem [simp]:
fixes x :: "int" assumes pos: "0 < y" shows "x < x + y"

In Isabelle, theorem is a synonym for lemma. In this document, we use lemma

only to refer to theorems proved in the HOLCF ’11 library of theory files; theorem

is reserved for theorems that are generated by a definition package. Isabelle also

provides the have command for stating sub-lemmas within larger proof scripts; this

notation indicates intermediate theorems that packages or tools prove internally

but do not export to the user.



www.manaraa.com

27

In this document, HOLCF ’11 library lemmas (presented with the lemma key-

word) are typically shown without the accompanying formal proof scripts, although

informal proof sketches are given for selected lemmas. Complete formal proof

scripts for all such lemmas can be found in theory files in the HOLCF directory of

the Isabelle 2011 distribution.

2.2 ABSTRACT DOMAIN THEORY

This section describes the HOLCF formalizations of various abstract concepts from

domain theory. (The HOLCF ’11 definitions shown in this section are virtually

unchanged since HOLCF ’99, and most date back to HOLCF ’95.) We start with

partial orders, chains, and completeness, working toward the final goal of this

section: the fixed point combinator and fixed point induction.

2.2.1 Type class hierarchy for cpos

Every version of HOLCF defines various classes of orders using Isabelle’s type

class mechanism [Haf10]. A type class is a way to formalize an algebraic structure,

which consists of some number of operations on a type together with axioms or

laws that the operations must satisfy. For example, a class for groups might fix

a binary operation, a unary inverse operation, and a zero element, and assume

a class axiom for each of the usual laws for groups. Type classes are defined in

Isabelle with the class command, which works much like the type class mechanism

in Haskell. Each new class can derive from any number of superclasses, overloaded

constants are specified with the fixes option, and class axioms are specified with

the assumes option.

All of the HOLCF ’11 class definitions, along with the definitions of related

constants, are shown in Fig. 2.1. We start with a class below that fixes an ordering

relation, but assumes nothing about it. Class po adds the usual axioms of a partial



www.manaraa.com

28

order. The is ub and is lub relations, defined for class po, are the usual notions

of upper bound and least upper bound of a set. In partial orders, least upper

bounds are unique (if they exist), which justifies defining the lub function using

the unique choice operator. HOLCF also defines syntax (⊔i. Y i) to represent

lub (range (λi. Y i)).

Next we define ascending countable chains, and define class cpo with the as-

sumption that every chain has a least upper bound. Note that HOLCF differs from

some presentations of domain theory by using countable chains rather than directed

sets. This is a reasonable choice for HOLCF, because directed-completeness is ac-

tually stronger than what is needed to construct least fixed points; also, being

more concrete, chains are often easier to work with. (See [AJ94, §2.2.4] for more

discussion related to this design choice.)

We define class pcpo as a cpo where there exists a minimal element; the constant

⊥ is then defined by unique choice.1

HOLCF ’11 also defines three other classes of cpos. The chain-finite types (class

chfin) are partial orders where every chain is eventually constant. Chain-finite

types were already present in Edinburgh LCF [GMW79] (known there as “easy”

types) and in HOLCF ’95; they are important for reasoning about admissibility

(see Sec. 2.2.3). HOLCF ’99 introduced class flat for pointed cpos with a flat

ordering, where every non-bottom value is maximal. Types in the new HOLCF

’11 class discrete cpo have a discrete ordering.

Isabelle’s class mechanism lets us prove additional subclass relationships be-

yond the ones declared in the class definitions [Haf10, §3.5]. Accordingly, we prove

1Making ⊥ a parameter of class pcpo (using fixes) would also be a reasonable design—similarly
for the lub constant in the cpo class. The reason for using unique choice is historical: At the time
of HOLCF ’95 and HOLCF ’99, the class mechanism did not support introducing constants and
adding axioms about them simultaneously. Using unique choice was necessary for the ⊥ and lub
constants to have the right type class constraints.



www.manaraa.com

29

class below =
fixes below :: "’a ⇒ ’a ⇒ bool" (infix "v" 50)

class po = below +
assumes below refl: "x v x"
assumes below trans: "Jx v y; y v zK =⇒ x v z"
assumes below antisym: "Jx v y; y v xK =⇒ x = y"

definition is ub :: "(’a::po) set ⇒ ’a ⇒ bool" (infix "<|" 55)
where "S <| x = (∀y∈S. y v x)"

definition is lub :: "(’a::po) set ⇒ ’a ⇒ bool" (infix "<<|" 55)
where "S <<| x = (S <| x ∧ (∀u. S <| u −→ x v u))"

definition lub :: "(’a::po) set ⇒ ’a"
where "lub S = (THE x. S <<| x)"

definition chain :: "(nat ⇒ ’a::po) ⇒ bool"
where "chain Y = (∀i. Y i v Y (Suc i))"

class cpo = po +
assumes cpo: "chain Y =⇒ ∃x. range Y <<| x"

class pcpo = cpo +
assumes least: "∃x. ∀y. x v y"

definition bottom :: "’a::pcpo" ("⊥")
where "⊥ = (THE x. ∀y. x v y)"

class chfin = po +
assumes chfin: "chain Y =⇒ ∃i. ∀j. i ≤ j −→ Y i = Y j"

class flat = pcpo +
assumes ax flat: "x v y =⇒ x = ⊥ ∨ x = y"

class discrete cpo = below +
assumes discrete cpo [simp]: "x v y ←→ x = y"

Figure 2.1: HOLCF ’11 type class definitions



www.manaraa.com

30

below

po

cpo

pcpo

chfin

flat

discrete cpo

(a) subclass relations as defined

below

po

cpo

pcpo chfin

flat discrete cpo

(b) subclass relations as proved

Figure 2.2: Type class hierarchy of HOLCF ’11

that every chain-finite type is a cpo, and that flat and discrete types are chain-

finite. By proving these new subclass relationships, we change the class hierarchy

as shown in Fig. 2.2.

2.2.2 Continuous functions

A function between partial orders is monotone if it preserves the ordering relation.

A function between cpos is continuous if it preserves least upper bounds of chains.2

definition monofun :: "(’a::po ⇒ ’b::po) ⇒ bool"
where "monofun f = (∀x y. x v y −→ f x v f y)"

definition cont :: "(’a::cpo ⇒ ’b::cpo) ⇒ bool"
where "cont f = (∀Y. chain Y −→ range (λi. f (Y i)) <<| f (⊔i. Y i))"

We prove some standard theorems relating these two concepts. For example, conti-

nuity implies monotonicity; this gives us another useful elimination rule for the cont

predicate. A direct corollary is that continuous functions map chains to chains.

lemma cont2contlubE:
"Jcont f; chain YK =⇒ f (⊔i. Y i) = (⊔i. f (Y i))"

2In domain theory, this form of continuity is also known as ω-continuity [AJ94]. It may be
contrasted with the slightly stronger condition of directed continuity, which requires a function
to preserve lubs of not just countable chains, but all directed sets.



www.manaraa.com

31

lemma cont2monofunE:
"Jcont f; x v yK =⇒ f x v f y"

lemma ch2ch cont:
"Jcont f; chain YK =⇒ chain (λi. f (Y i))"

When proving continuity of a function, it is often easier to prove monotonicity

first, rather than attempting to prove continuity directly. Therefore HOLCF ’11

provides the following introduction rule for the cont predicate for convenience:

lemma contI2:
"Jmonofun f; ∧Y. Jchain Y; chain (λi. f (Y i))K =⇒ f (⊔i. Y i) v (⊔i. f (Y i))K

=⇒ cont f"

The identity and constant functions are clearly continuous. The rule cont apply

shows continuity of a larger function from continuity of its subterms; cont compose

follows as a special case. Lemma cont2cont lub essentially says that the lub of a

chain of continuous functions is itself continuous. The proofs of these last rules use

contI2, along with the elimination rules (with names ending in E) for cont listed

above.

lemma cont id: "cont (λx. x)"

lemma cont const: "cont (λx. c)"

lemma cont apply:
"Jcont t; ∧x. cont (λy. f x y); ∧y. cont (λx. f x y)K =⇒ cont (λx. (f x) (t x))"

lemma cont compose:
"Jcont c; cont fK =⇒ cont (λx. c (f x))"

lemma cont2cont lub:
"J∧x. chain (λi. F i x); ∧i. cont (λx. F i x)K =⇒ cont (λx. ⊔i. F i x)"

The subclasses of cpos defined in the previous section provide some shortcuts

for proving continuity. All monotone functions with chain-finite domain are con-

tinuous, as are all strict functions with flat domain. Furthermore, every function

with a discrete domain is continuous. Each of the next few lemmas is constrained



www.manaraa.com

32

to particular subclasses of cpos, as indicated by the class annotations on each type

variable.

lemma chfindom monofun2cont:
"monofun f =⇒ cont (f::(’a::chfin) ⇒ (’b::cpo))"

lemma flatdom strict2cont:
"f ⊥ = ⊥ =⇒ cont (f::(’a::flat) ⇒ (’b::pcpo))"

lemma cont discrete cpo:
"cont (f::(’a::discrete cpo) ⇒ (’b::cpo))"

In addition to the cont predicate, HOLCF also defines a type ’a → ’b of contin-

uous functions, which coexists with Isabelle’s ordinary set-theoretic function space

type ’a ⇒ ’b. Application and abstraction of continuous functions use the special

HOLCF syntax f·x and Λ x. t, compared with f x and λx. t for the ordinary func-

tion space. Details about the definition of the continuous function type are found

in Sec. 2.4.3.

2.2.3 Fixed points, admissibility, and compactness

It is a well known fact in domain theory that any continuous function f : D → D

over a pointed cpo D has a least fixed point. Furthermore, the least fixed point can

be constructed by starting with ⊥, iterating f , and taking the least upper bound:

fix(f) = ⊔
n∈ω f

n(⊥).

We formalize this construction in HOLCF ’11 by defining the operations iterate

and fix as shown below. Note the use of the continuous function space type ’a → ’a,

which ensures that fix can only be applied to continuous functions.

primrec iterate :: "nat ⇒ (’a::cpo → ’a) → (’a → ’a)"
where "iterate 0 = (Λ f x. x)"
| "iterate (Suc n) = (Λ f x. f·(iterate n·f·x))"

definition fix :: "(’a → ’a) → ’a::pcpo"
where "fix = (Λ f. ⊔n. iterate n·f·⊥)"



www.manaraa.com

33

The fact that fix·f is indeed a least fixed point of f is formalized in the following

two lemmas. Informal proofs of these properties can be found in any domain theory

textbook; formal proof scripts reside in the theory file Fix.thy of the HOLCF ’11

distribution.

lemma fix eq: "fix·f = f·(fix·f)"

lemma fix least below: "f·x v x =⇒ fix·f v x"

For proving properties about least fixed points, we formalize the principle of

fixed point induction and the associated notion of admissibility. Fixed point in-

duction is a primitive rule in the LCF logic; the admissible predicates are those

for which the fixed point induction principle is valid. In the Edinburgh and Cam-

bridge LCF systems the notion of admissibility is hard-wired into the kernel as a

syntactic check on formulas [GMW79, Pau87]. In contrast, for HOLCF we formal-

ize admissibility in a semantic way, as a higher-order predicate on predicates: A

predicate P is admissible if it holds for the least upper bound of a chain whenever

it holds for all elements of the chain.

definition adm :: "(’a::cpo ⇒ bool) ⇒ bool"
where "adm P = (∀Y. chain Y −→ (∀i. P (Y i)) −→ P (⊔i. Y i))"

Now we can use admissibility to formulate the fixed point induction rule fix ind.

lemma fix ind: "Jadm P; P ⊥; ∧x. P x =⇒ P (f·x)K =⇒ P (fix·f)"

Examples using fixed point induction for reasoning about functional programs can

be found in the literature [GH05]. Although fixed point induction is a rather low-

level form of reasoning, the fixed point induction rule can also be used to derive

other higher-level induction principles, such as structural induction [Pau84].

Automation for admissibility proofs. Admissibility conditions arise often in

users’ proofs, whenever they use fixed point induction, or any other induction rule

derived from it. Fortunately, admissibility can be proven automatically for many



www.manaraa.com

34

lemma adm const [simp]: "adm (λx. t)"

lemma adm all [simp]: "J∧y. adm (λx. P x y)K =⇒ adm (λx. ∀y. P x y)"

lemma adm conj [simp]: "Jadm P; adm QK =⇒ adm (λx. P x ∧ Q x)"

lemma adm disj [simp]: "Jadm P; adm QK =⇒ adm (λx. P x ∨ Q x)"

lemma adm imp [simp]: "Jadm (λx. ¬ P x); adm QK =⇒ adm (λx. P x −→ Q x)"

lemma adm iff [simp]:
"Jadm (λx. P x −→ Q x); adm (λx. Q x −→ P x)K =⇒ adm (λx. P x ←→ Q x)"

lemma adm below [simp]: "Jcont u; cont vK =⇒ adm (λx. u x v v x)"

lemma adm eq [simp]: "Jcont u; cont vK =⇒ adm (λx. u x = v x)"

lemma adm not below [simp]: "Jcont tK =⇒ adm (λx. t x 6v u)"

Figure 2.3: Simplification rules for admissibility predicate

predicates.

One way to prove admissibility of a predicate is to use a property of the type

of the predicate. For chain-finite types, the least upper bound of a chain is always

an element of the chain; this means that every predicate on such a type is trivially

admissible.

lemma adm chfin [simp]: "adm (λ(x::’a::chfin). P x)"

Another way is to derive admissibility of a formula from properties of subfor-

mulas, using various structural rules. For example, admissibility is preserved by

conjunction, disjunction, and universal quantification. Equalities and order com-

parisons between continuous functions are also admissible. There is no general rule

for negation, but negated comparisons like t 6v u can be shown to be admissible

in x if x does not occur free in u. A set of these admissibility rules is shown in

Fig. 2.3; these rules are already present in HOLCF ’99 [Mül98, MNOS99].



www.manaraa.com

35

lemma adm compact not below [simp]:
"Jcompact k; cont tK =⇒ adm (λx. k 6v t x)"

lemma adm neq compact [simp]: "Jcompact k; cont tK =⇒ adm (λx. t x 6= k)"

lemma adm compact neq [simp]: "Jcompact k; cont tK =⇒ adm (λx. k 6= t x)"

Figure 2.4: Admissibility rules involving compactness

There are some important predicates not covered by the rules in Fig. 2.3; specif-

ically, there is a lack of rules for negated equalities and comparisons. To cover the

missing cases, we formalize the standard domain-theoretic concept of a compact

element. (Compactness is new to HOLCF ’11; it was not present in HOLCF ’99 or

earlier versions.) Intuitively, a compact element of a cpo is one that cannot be ap-

proximated by values strictly below itself. More precisely, if x is compact, then for

any chain Y where x v (⊔i. Y i), there must exist some element of the chain such

that x v Y i. Equivalently, we can define compactness in terms of admissibility:

definition compact :: "’a::cpo ⇒ bool"
where "compact k = adm (λx. k 6v x)"

Using the definition of compactness together with the following substitution prop-

erty of admissibility [MNOS99], we can derive the additional rules shown in Fig. 2.4.

lemma adm subst: "Jcont f; adm PK =⇒ adm (λx. P (f x))"

All elements of chain-finite types are compact, as is the bottom element of any

pointed cpo. Furthermore, we shall see in Sec. 2.4 that for each of the types defined

in HOLCF ’11, all of the constructor functions preserve compactness.

lemma compact chfin [simp]: "compact (x::’a::chfin)"

lemma compact bottom [simp]: "compact ⊥"

Finally, let us consider a few examples of predicates whose admissibility can

be proved automatically. Admissibility of (λx. f·x 6= ⊥ ∧ (∀y. g·x = h·y)) can be



www.manaraa.com

36

proven by the simplifier, as can the admissibility of (λx. p·x = a −→ f·x v x), as

long as a is compact. The predicate (λx. f·x v a ←→ g·x v b) is always admissible,

but (λx. a v f·x ←→ b v g·x) is only admissible if a and b are compact.

2.3 DEFINING CPOS AS SUBTYPES: THE CPODEF PACKAGE

One way to create instances of the cpo class is by a manual process: Starting with

an existing HOL type or datatype, we define an ordering relation, and then proceed

to prove that the ordering is a complete partial order. For some types (e.g. cartesian

products and function spaces) this is not too difficult, but in general, proving the

cpo axioms manually for a new type can be a lot of work, requiring lengthy proof

scripts. In addition, defining operations on the new cpo requires manual proofs of

continuity, which can also be tedious.

Another way to construct a new cpo is to carve out a subset of an existing cpo;

then the new type can inherit the order structure from the old one. Continuous

operations on the new type can also be derived from continuous functions on the

old cpo. In HOLCF ’11, the new Cpodef package automates this type definition

process. Several types in HOLCF ’11 are now defined using the Cpodef pack-

age, including the continuous function space (§2.4.3), the flat domain type ’a lift

(§2.4.5), the strict product (§2.4.6), and the strict sum (§2.4.7).

The Cpodef package adds two new commands to HOLCF ’11, cpodef and

pcpodef, for defining types in classes cpo and pcpo, respectively. They are imple-

mented by layering new functionality on top of Isabelle’s existing typedef com-

mand [NPW02, §8.5].

Using typedef is the most basic way to define a new type in Isabelle; it in-

troduces a new type isomorphic to a nonempty subset of an existing type. As an

example, we can define a new type isomorphic to the set of all odd integers:

typedef oddint = "{x::int. odd x}"



www.manaraa.com

37

oddint ≡
{x. odd x}

Abs oddint

Rep oddint

Type int

Type oddint

Figure 2.5: Type definition with typedef, yielding Rep and Abs functions

After discharging a proof obligation that the given set {x::int. odd x} is nonempty,

the Typedef package generates a few constants and theorems. The set oddint

is defined equal to the set we specified; we also get a pair of representation and

abstraction functions Rep oddint and Abs oddint that map between the set and the

new type as shown in Fig. 2.5. The essential properties of these constants are listed

below.

theorem oddint def: "oddint ≡ {x::int. odd x}"

theorem Rep oddint: "Rep oddint x ∈ oddint"

theorem Rep oddint inverse: "Abs oddint (Rep oddint x) = x"

theorem Abs oddint inverse: "y ∈ oddint =⇒ Rep oddint (Abs oddint y) = y"

We can use Rep oddint and Abs oddint to define new operations on type oddint,

like the function oddmult below. Properties like associativity of oddmult can then

be proved using theorems provided by Typedef.

definition oddmult :: "oddint ⇒ oddint ⇒ oddint"
where "oddmult x y = Abs oddint (Rep oddint x ∗ Rep oddint y)"

All of the generated theorems about Rep oddint and Abs oddint are derived from

a single axiom of the form "type definition Rep oddint Abs oddint oddint", where the



www.manaraa.com

38

type definition predicate is defined as follows.3

definition type definition :: "(’b ⇒ ’a) ⇒ (’a ⇒ ’b) ⇒ ’a set ⇒ bool"
where "type definition Rep Abs A ≡
(∀x. Rep x ∈ A) ∧ (∀x. Abs (Rep x) = x) ∧ (∀y. y ∈ A −→ Rep (Abs y) = y)"

The Typedef package includes a small library of lemmas, each with an assumption

of the form "type definition Rep Abs A". By instantiating these with a particular

type definition axiom, Typedef generates all the theorems about those particular

Rep and Abs functions.

The Cpodef package includes a similar library of lemmas with type definition

assumptions. Some of these lemmas are used to derive the theorems that the

package generates; others are used to discharge class instance proofs.

Proving a subtype is a partial order. The first lemma in the Cpodef library

is typedef po, which is used for proving po class instances.

lemma typedef po:
fixes Rep :: "’b::below ⇒ ’a::po" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"
shows "OFCLASS(’b, po class)"

The conclusion of the lemma is a special predicate stating that type ’b satisfies all

the axioms of class po; it is precisely the proof obligation that users are faced with

when they instantiate class po with Isabelle’s instance command. For class po, we

must show that (op v) is reflexive, transitive, and antisymmetric. Reflexivity and

transitivity on type ’b follow directly from the same properties on type ’a, after

unfolding below def. Proving antisymmetry also requires injectivity of Rep, which

follows from assumption type.

3Actually, it is defined with the locale command, not with definition; but the distinction is
not important.



www.manaraa.com

39

Proving a subtype is a cpo. The next few lemmas in the Cpodef library

are related to completeness and continuity. Note that these lemmas have some

additional type class constraints on types ’a and ’b. Each lemma also has a new

assumption adm A that asserts the chain-completeness of set A. The first lemma,

typedef is lub, shows how to construct least upper bounds for chains on type ’b.

lemma typedef is lub:
fixes Rep :: "’b::po ⇒ ’a::cpo" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"
assumes adm A: "adm (λx. x ∈ A)"
shows "chain Y =⇒ range Y <<| Abs (⊔i. Rep (Y i))"

Note that in order to show that any particular x :: ’b is the least upper bound of a

chain Y, it suffices to show that Rep x is the least upper bound of Rep mapped over

Y. Accordingly, we will show range (λ i. Rep (Y i)) <<| Rep (Abs (⊔i. Rep (Y i))).

From type, we know that every Rep (Y i) ∈ A; together with adm A we then have

that (⊔i. Rep (Y i)) ∈ A. In turn, this implies that Rep (Abs (⊔i. Rep (Y i))) equals

(⊔i. Rep (Y i)), so our goal simplifies to range (λ i. Rep (Y i)) <<| (⊔i. Rep (Y i)).

This final goal is true because (λi. Rep (Y i)) is a chain on a cpo type; this concludes

the proof.

From lemma typedef is lub, it is a simple matter to derive the lemma typedef cpo,

which shows OFCLASS(’b, cpo class) from the same assumptions. Another direct

corollary of typedef is lub is typedef thelub, which concludes that (⊔i. Y i) equals

Abs (⊔i. Rep (Y i)) for any chain Y.

Continuity of Rep and Abs. The next pair of lemmas show that the Rep and

Abs functions are both continuous.

lemma typedef cont Rep:
fixes Rep :: "’b::cpo ⇒ ’a::cpo" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"



www.manaraa.com

40

assumes adm A: "adm (λx. x ∈ A)"
shows "cont Rep"

The proof of typedef cont Rep starts by applying the standard rule for continu-

ity. We must show that range (λ i. Rep (Y i)) <<| Rep (⊔i. Y i) for an arbitrary

chain Y. After substituting lemma typedef thelub, our proof obligation becomes

range (λ i. Rep (Y i)) <<| Rep (Abs (⊔i. Rep (Y i))), which we have already estab-

lished while proving typedef is lub.

The formulation of the continuity rule for Abs is a little different than the rule

for Rep. Because the behavior of Abs is unspecified on inputs not in A, we cannot

prove that Abs is always continuous; instead we prove that Abs is continuous when

composed with another continuous function f whose range is a subset of A.

lemma typedef cont Abs:
fixes Rep :: "’b::cpo ⇒ ’a::cpo" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"
assumes adm A: "adm (λx. x ∈ A)"
shows "(∧x. f x ∈ A) =⇒ cont f =⇒ cont (λx. Abs (f x))"

The proof of typedef cont Abs is by unfolding the definitions of continuity and least

upper bounds, and simplifying with the rule Rep (Abs (f x)) = f x (derived from

type and the assumption about f.) The assumption adm A is actually not necessary,

but the implementation of Cpodef is simpler when all the lemmas have the same

set of assumptions.

Compactness. We prove that an element x :: ’b is compact whenever Rep x is.

lemma typedef compact:
fixes Rep :: "’b::cpo ⇒ ’a::cpo" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"
assumes adm A: "adm (λx. x ∈ A)"
shows "compact (Rep k) =⇒ compact k"



www.manaraa.com

41

We assume compact (Rep k), which by definition means adm (λx. Rep k 6v x). Then

using the continuity of Rep, lemma adm subst gives us adm (λx. Rep k 6v Rep x).

Using below def, we see that this is equivalent to adm (λx. k 6v x), which is the

definition of compact k.

Proving a subtype is pointed. The last few theorems in the Cpodef library

are about bottoms and the pcpo class. If the defining set A contains ⊥, then the

type ’b will have a least element.

lemma typedef pcpo:
fixes Rep :: "’b::cpo ⇒ ’a::pcpo" and Abs :: "’a ⇒ ’b" and A :: "’a set"
assumes type: "type definition Rep Abs A"
assumes below def: "(op v) ≡ (λx y. Rep x v Rep y)"
assumes bottom: "⊥ ∈ A"
shows "OFCLASS(’b, pcpo class)"

The proof is straightforward, and involves showing that Abs ⊥ is the minimal el-

ement of type ’b. Finally we proceed to prove lemmas Rep strict and Abs strict,

which respectively conclude Rep ⊥ = ⊥ and Abs ⊥ = ⊥ from the same assump-

tions, using similar reasoning.

Implementing the commands. The cpodef and pcpodef commands each

have an input syntax identical to the typedef command, but they differ in the

proof obligations they require of the user. Figure 2.6 shows the precise proof

obligations required by each tool. Additionally, each command has different class

requirements on the representation type. For example, cpodef can only be used

to define sub-cpos of types that are already in class cpo.

When the cpodef command is used, the Cpodef package first obtains proofs of

∃x. x ∈ A and adm (λx. x ∈ A) from the user. The tool then uses the nonemptiness

proof to call the typedef command internally, yielding a type definition theorem.

The tool then instantiates class below by defining (op v) ≡ (λx y. Rep x v Rep y)



www.manaraa.com

42

Command Type class Proof obligation

typedef type ∃x. x ∈ A

cpodef cpo (∃x. x ∈ A) ∧ adm (λx. x ∈ A)

pcpodef pcpo ⊥ ∈ A ∧ adm (λx. x ∈ A)

Figure 2.6: Comparison of typedef, cpodef, and pcpodef commands

on the new type, and uses lemma typedef po to prove an instance for class po.

Next, it uses the admissibility proof with lemma typedef cpo to prove the cpo class

instance. Finally, it instantiates lemmas like typedef cont Rep, typedef cont Abs

and typedef compact, and binds them to new type-specific theorem names. More

details about the generated theorems can be found in the upcoming sections.

The pcpodef command starts by obtaining a proof of⊥ ∈ A ∧ adm (λx. x ∈ A)

from the user. From ⊥ ∈ A, the tool derives ∃x. x ∈ A, which is used to call

cpodef internally; this yields type definition and below def theorems, and a cpo

class instance. Next it can use lemma typedef pcpo to prove the pcpo class instance.

Finally, it instantiates the strictness theorems for Rep and Abs and gives them

type-specific theorem names (see Sec. 2.4.6 for a specific example).

2.4 HOLCF TYPES

HOLCF provides types corresponding to all of the basic constructions of domain

theory, with instances of the cpo and pcpo classes, as appropriate. The remainder

of this section is devoted to the definitions, operations, and properties of these

types as formalized in HOLCF ’11: cartesian product (§2.4.1), full function space

(§2.4.2), continuous function space (§2.4.3), lifted cpo (§2.4.4), discrete cpos and

flat lifted types (§2.4.5), strict product (§2.4.6), and strict sum (§2.4.7).



www.manaraa.com

43

2.4.1 Cartesian product cpo

If D and E are cpos, then the cartesian product D×E also forms a cpo, with the

componentwise ordering: (x1, y1) v (x2, y2) if and only if x1 v x2 ∧ y1 v y2. Least

upper bounds are also computed componentwise. If D and E both have bottom

elements, then D × E has a minimal element ⊥ = (⊥,⊥).

In HOLCF ’11, as with earlier versions of HOLCF, the product cpo is for-

malized by providing class instances for the existing Isabelle/HOL product type

’a × ’b. Isabelle type classes with overloaded constants are instantiated with the

instantiation command (for classes that fix no new constants, a simpler instance

command suffices). With the following instantiation command block, we define

the ordering on type ’a × ’b (which is infix syntax for the type (’a, ’b) prod) in

terms of the orderings on types ’a and ’b, which are in turn assumed to be in class

below. Because class below asserts no axioms, the instance proof is trivial (using

the “..” proof method).

instantiation prod :: (below, below) below
begin
definition below prod def:
"(op v) ≡ (λp1 p2. fst p1 v fst p2 ∧ snd p1 v snd p2)"

instance ..
end

Next, the following instance declarations assert that type ’a × ’b is in class po

whenever both ’a and ’b are, and that a similar relationship holds for classes cpo

and pcpo. Each instance command yields a proof obligation, but the proofs are

completely standard, so we omit them here.

instance prod :: (po, po) po

instance prod :: (cpo, cpo) cpo

instance prod :: (pcpo, pcpo) pcpo

We prove all the usual theorems about ordering, least upper bounds, continuity,



www.manaraa.com

44

and strictness for the operations of Pair, fst, and snd.

lemma Pair below iff: "(a, b) v (c, d) ←→ a v c ∧ b v d"

lemma lub Pair: "Jchain X; chain YK =⇒ (⊔i. (X i, Y i)) = (⊔i. X i, ⊔i. Y i)"

lemma cont fst: "cont fst"

lemma cont snd: "cont snd"

lemma cont2cont Pair: "Jcont f; cont gK =⇒ cont (λx. (f x, g x))"

lemma fst strict: "fst ⊥ = ⊥"

lemma snd strict: "snd ⊥ = ⊥"

lemma Pair strict: "(⊥, ⊥) = ⊥"

One lemma that is new in HOLCF ’11 is the compactness property for the Pair

constructor:

lemma compact Pair: "Jcompact x; compact yK =⇒ compact (x, y)"

The proof starts by applying the standard introduction rule for compactness, so

we have the goal adm (λz. (x, y) 6v z). Simplifying with the definition of ordering

on the product type, this becomes adm (λz. x 6v fst z ∨ y 6v snd z). Finally, this is

solved using lemmas adm disj, adm compact not below, cont fst, and cont snd, with

the assumptions about x and y.

2.4.2 Full function space cpo

If D is an arbitrary set, and E is a cpo, then the full function space D ⇒ E forms

a cpo when the functions are given the pointwise ordering. If E has a bottom

element, then D ⇒ E contains a minimal element.

HOLCF ’11 provides the following class instances for the full function space

type ’a ⇒ ’b. As with the product type, the proofs are the same standard ones

used in previous HOLCF versions, so we just summarize the basic results.

instance fun :: (type, po) po

instance fun :: (type, cpo) cpo



www.manaraa.com

45

instance fun :: (type, pcpo) pcpo

We prove the usual lemmas about ordering, least upper bounds, strictness and

continuity:

lemma fun below iff: "(f v g) = (∀x. f x v g x)"

lemma thelub fun: "chain (Y::nat ⇒ ’a ⇒ ’b) =⇒ (⊔i. Y i) = (λx. ⊔i. Y i x)"

lemma app strict: "⊥ x = ⊥"

lemma cont2cont fun: "cont f =⇒ cont (λx. f x y)"

lemma cont2cont lambda: "J∧y. cont (λx. f x y)K =⇒ cont (λx y. f x y)"

2.4.3 Continuous function type

In domain theory, the continuous function space [D → E] consists of the set of all

continuous functions between cpos D and E. Ordered pointwise, [D → E] forms

a cpo, and it has a least element whenever E does. In HOLCF ’11, we define the

continuous function type ’a → ’b to be isomorphic to a subset of the full function

type ’a ⇒ ’b, using the cpodef command.

cpodef (’a, ’b) cfun (infixr "→" 0) = "{f::(’a::cpo ⇒ ’b::cpo). cont f}"

Two proof obligations are required for this definition to be accepted: For nonempti-

ness, we must show that there exists a continuous function of type ’a ⇒ ’b (any

constant function will do). For admissibility, we must show that the lub of a

chain of continuous functions is continuous, which is an easy corollary of lemma

cont2cont lub (Sec. 2.2.2). Once the type definition is processed we get the follow-

ing representation and abstraction functions.

Rep cfun :: (’a → ’b) ⇒ (’a ⇒ ’b)

Abs cfun :: (’a ⇒ ’b) ⇒ (’a → ’b)

The HOLCF notations for continuous application and abstraction are really just

abbreviations for these constants: The syntax f·x represents Rep cfun f x, and



www.manaraa.com

46

definition cfun def: "cfun ≡ {f. cont f}"

theorem Rep cfun inverse: "Abs cfun (Rep cfun x) = x"

theorem Abs cfun inverse: "y ∈ cfun =⇒ Rep cfun (Abs cfun y) = y"

theorem Rep cfun: "Rep cfun x ∈ cfun"

theorem Rep cfun inject: "(Rep cfun x = Rep cfun y) = (x = y)"

definition below cfun def: "(op v) ≡ (λx y. Rep cfun x v Rep cfun y)"

theorem cont Rep cfun: "cont f =⇒ cont (λx. Rep cfun (f x))"

theorem cont Abs cfun: "J∧x. f x ∈ cfun; cont fK =⇒ cont (λx. Abs cfun (f x))"

Figure 2.7: Selected theorems generated by cpodef for continuous function type

(Λ x. t) represents Abs cfun (λx. t).

The cpodef command also generates several theorems, including those listed

in Fig. 2.7. Some of these are produced by the Typedef package, but the last

few are added by Cpodef.

Several of the key properties about the continuous function space are derived

fairly directly from the theorems produced by Cpodef; Fig. 2.8 lists these. Ex-

tensionality follows from Rep cfun inject; extensionality of function inequality is a

consequence of below cfun def. We get eta-conversion from Rep cfun inverse, while

beta-conversion (with a continuity side-condition) follows from Abs cfun inverse.

The continuous application operator Rep cfun can be proved continuous in its first

argument using cont Rep cfun, and in its second using Rep cfun; these lemmas can

then be combined into a single continuity rule using lemma cont apply. Finally, a

continuity rule for continuous abstraction follows from rule cont Abs cfun.

The cpodef command automatically proves that type ’a → ’b is an instance of

class cpo (as long as ’a and ’b are also cpos, as required by the definition). But we

should also like to reason about the bottom element of type ’a → ’b, which must

exist whenever type ’b is pointed. Therefore we prove the following class instance.



www.manaraa.com

47

lemma cfun eq iff: "(f = g) = (∀x. f·x = g·x)"

lemma cfun below iff: "(f v g) = (∀x. f·x v g·x)"

lemma eta cfun: "(Λ x. f·x) = f"

lemma beta cfun: "cont f =⇒ (Λ x. f x)·u = f u"

lemma cont Rep cfun1: "cont (λf. f·x)"

lemma cont Rep cfun2: "cont (λx. f·x)"

lemma cont2cont APP: "Jcont (λx. f x); cont (λx. t x)K =⇒ cont (λx. (f x)·(t x))"

lemma cont2cont LAM:
"J∧x. cont (λy. f x y); ∧y. cont (λx. f x y)K =⇒ cont (λx. Λ y. f x y)"

Figure 2.8: Properties of continuous functions, derived from cpodef theorems

instance cfun :: (cpo, pcpo) pcpo

We prove the instance using typedef pcpo, the same lemma used internally by the

pcpodef command. As a proof obligation, we must show that (⊥::’a ⇒ ’b) ∈ cfun.

From the theory of the full function space, we know that ⊥ = (λx. ⊥), which is

continuous because it is a constant function. Using lemmas typedef Rep strict and

typedef Abs strict, we can then show that Rep cfun and Abs cfun are strict:

lemma APP strict: "⊥·x = ⊥"

lemma LAM strict: "(Λ x. ⊥) = ⊥"

HOLCF ’11 also defines a few useful operations for the continuous function type.

The identity and composition operator are straightforward and require little dis-

cussion; they have been present in all versions of HOLCF. The abstractions used

in their definitions are easily shown to be continuous, so there is no obstacle to un-

folding and beta-reducing their definitions. The theory defines infix syntax f oo g

to represent cfcomp·f·g.

definition ID :: "’a → ’a"
where "ID = (Λ x. x)"



www.manaraa.com

48

definition cfcomp :: "(’b → ’c) → (’a → ’b) → ’a → ’c"
where "cfcomp = (Λ f g x. f·(g·x))"

The next operation in the continuous function theory is seq, which can be used to

construct strict functions; it is new for HOLCF ’11. It takes two arguments x and

y; the result is ⊥ when x = ⊥ and y otherwise.4 In the upcoming sections, we will

see that it is useful for defining several operations on the strict product and strict

sum types.

definition seq :: "’a::pcpo → ’b::pcpo → ’b"
where "seq = (Λ x. if x = ⊥ then ⊥ else ID)"

Proving that the body of seq is continuous is a bit more difficult than for ID

or cfcomp. To prove continuity, we must show for an arbitrary chain Y that

(if (⊔i. Y i) = ⊥ then ⊥ else ID) is a least upper bound of the sequence given by

(λi. if Y i = ⊥ then ⊥ else ID). The proof proceeds using a lemma about least up-

per bounds:

lemma lub eq bottom iff: "chain Y =⇒ (⊔i. Y i) = ⊥ ←→ (∀i. Y i = ⊥)"

By unfolding the definition of least upper bound, and using lub eq bottom iff as a

rewrite rule, we can prove continuity of seq using Isabelle’s simplifier. The simplifier

automatically performs the necessary case splits on if-then-else expressions. We

prove the following rules about seq, and add some of them to the simplifier:

lemma seq conv if: "seq·x = (if x = ⊥ then ⊥ else ID)"

lemma seq simps [simp]:
"seq·⊥ = ⊥"
"seq·x·⊥ = ⊥"
"x 6= ⊥ =⇒ seq·x = ID"

The older HOLCF function strictify, which takes a function argument and returns

a strict function, is now defined in terms of seq as follows.

4Haskell programmers may recognize this as the Haskell primitive seq, which has the same
semantics.



www.manaraa.com

49

Figure 2.9: Lifted cpo

definition strictify :: "(’a::pcpo → ’b::pcpo) → ’a → ’b"
where "strictify = (Λ f x. seq·x·(f·x))"

2.4.4 Lifted cpo

Lifting is a way to create a new pointed cpo from any given cpo, by adding a

new bottom element (see Fig. 2.9). If D is a cpo (which may or may not have a

least element), then the lifted cpo D⊥ consists of ⊥ and values of the form up(x)

where x ∈ D. Furthermore, the constructor up : D → D⊥ is non-strict, that is,

up(x) 6= ⊥ for any x ∈ D. In particular, if D has a bottom element we have

up(⊥) 6= ⊥.

In HOLCF, the lifted cpo is formalized by the type constructor ’a u, which is

defined using the Isabelle/HOL Datatype package.5 (We also define ’a⊥ as an

alternative syntax to ’a u.)

datatype ’a u = Ibottom | Iup ’a

Next we instantiate class below for type ’a⊥ (requiring ’a to be in class cpo). We

define the ordering in the expected way, with Ibottom as the least element.

instantiation u :: (cpo) below
begin
definition below up def: "(x v y) =
(case x of Ibottom ⇒ True | Iup a ⇒

5The name ’a u was inherited from earlier LCF provers. Perhaps ’a lift would be a more apt
name, but it is already taken in HOLCF (see §2.4.5).



www.manaraa.com

50

(case y of Ibottom ⇒ False | Iup b ⇒ a v b))"
instance ..

end

It is straightforward to show that type ’a⊥ is a partial order: The proofs of re-

flexivity, transitivity, and antisymmetry proceed by case analysis. Proving the cpo

instance requires more work. In order to show chain-completeness of the lifted cpo

type, we prove a case analysis lemma for chains of type nat ⇒ ’a⊥.

lemma up chain lemma:
assumes "chain Y"
shows "(∀i. Y i = Ibottom) ∨
(∃A k. (∀i. Iup (A i) = Y (i + k)) ∧ chain A ∧ range Y <<| Iup (⊔i. A i))"

In the first case, a chain Y might be constantly Ibottom: In this case the least

upper bound of Y is Ibottom. Otherwise, Y has an initial segment of zero or more

Ibottom terms, followed by the Iup constructor mapped over a chain A :: nat ⇒ ’a.

In this case, Iup (⊔ i. A i) gives the least upper bound of chain Y; showing this

requires a lemma stating that shifting a sequence preserves the least upper bound.

Thus, by case analysis on chains, we prove that ’a⊥ is a cpo. Proving the pcpo

class instance is easy, because Ibottom is the minimal element of the type.

With the class instances finished, we can now define operations on type ’a⊥
with continuous function types. We start with the constructor up.

definition up :: "’a → ’a⊥" where "up = (Λ a. Iup a)"

It is relatively simple to prove that Iup preserves least upper bounds (and is there-

fore continuous), by unfolding the definitions and calling the simplifier. Now know-

ing Ibottom = ⊥ and Iup x = up·x, we can prove new versions of the case-analysis

and induction rules for type ’a⊥ in terms of ⊥ and up instead of Ibottom and Iup.

We similarly derive the ordering properties and injectivity of up from the same

properties of Iup.

lemma up defined [simp]: "up·x 6= ⊥"



www.manaraa.com

51

lemma up eq [simp]: "(up·x = up·y) = (x = y)"

lemma up below [simp]: "(up·x v up·y) = (x v y)"

To prove that the up constructor preserves compactness requires unfolding the

definitions and reasoning by cases on chains, using up chain lemma.

lemma compact up: "compact x =⇒ compact (up·x)"

Next, we define the case combinator for type ’a⊥, called fup.

definition fup :: "(’a → ’b::pcpo) → ’a⊥ → ’b"
where "fup = (Λ f x. case x of Ibottom ⇒ ⊥ | Iup a ⇒ f·a)"

It is easy to prove that the body of fup is continuous in f, by case analysis on x. To

show that the body of fup is continuous in x requires using up chain lemma again,

along with more reasoning about least upper bounds of shifted chains. The case

combinator obeys the following rules:

lemma fup simps [simp]:
"fup·f·⊥ = ⊥"
"fup·f·(up·x) = f·x"

We also define special syntax for fup. The case expression (case x of up·a ⇒ t)

represents the term fup·(Λ a. t)·x, and (Λ(up·a). t) represents fup·(Λ a. t).

2.4.5 Cpos from HOL types

In this section we will introduce two type constructors that facilitate the integration

of types and terms from Isabelle/HOL with HOLCF [MNOS99]. The first, ’a discr

(introduced in HOLCF ’99), yields an unpointed discrete cpo. The second, ’a lift

(present since HOLCF ’95), adds a bottom element to yield a flat pointed cpo.

The ’a lift type constructor is also used to model two of the base types from LCF:

the lifted unit type one, and the domain of truth values tr (see Fig. 2.10).



www.manaraa.com

52

⊥

ONE

(a) one = unit lift

⊥

TT FF

(b) tr = bool lift

⊥

Def 0 Def 1 Def 2 Def 3 ... Def n

(c) nat lift

Figure 2.10: Flat lifted types in HOLCF

Discrete cpo. Any ordinary HOL type can be turned into a cpo by giving it a

discrete ordering. In HOLCF this construction is formalized using the type ’a discr.

datatype ’a discr = Discr "’a"

To go along with the constructor function Discr, we define its inverse, undiscr.

definition undiscr :: "’a discr ⇒ ’a"
where "undiscr x = (case x of Discr y ⇒ y)"

The ordering on type ’a discr is defined so that (x v y) = (x = y), which makes

’a discr an instance of the discrete cpo class (and thus also the chfin class). In

particular, this means that every function f :: ’a discr ⇒ ’b is continuous, and every

predicate P :: ’a discr ⇒ bool is admissible.

It might make sense to define discrete orderings for various HOL types, such

as bool, nat, and int, making all those types instances of the discrete cpo class.

However, this is not really necessary, because the types bool discr, nat discr, and

int discr can be used instead.

HOLCF ’11 does define a discrete ordering for the single-element HOL unit

type. Type unit is special, because it is the only discrete cpo that also has a

bottom element. For technical reasons, it is much simpler to make unit an instance

of class pcpo directly than it would be to make unit discr :: pcpo. The Isabelle type

unit corresponds to the void type from Cambridge LCF [Pau87].

Flat lifted type. Any ordinary HOL type can be made into a pointed cpo by

adjoining a new bottom element, and giving the new type a flat ordering (in the



www.manaraa.com

53

sense of the flat type class described in Sec. 2.2.1). This construction is formalized

in HOLCF by the type ’a lift.

pcpodef (open) ’a lift = "UNIV :: (’a discr)⊥ set"

We use the Cpodef package to define ’a lift as an isomorphic copy of (’a discr)⊥.6,7

As such, the Rep lift and Abs lift functions form a continuous isomorphism. Next

we define the constructor function, Def.

definition Def :: "’a ⇒ ’a lift"
where "Def x = Abs lift (up·(Discr x))"

Using this definition, we prove that Def is injective and never returns ⊥. It is

also simple to prove an induction rule for type ’a lift, by case analysis on the

representing type.

lemma lift induct: "JP ⊥; ∧x. P (Def x)K =⇒ P y"

Using these lemmas, we then use the rep datatype command provided by the

Datatype package to generate a case combinator lift case and various related

theorems; thus we are allowed to treat Def and ⊥ as constructors of an ordinary

datatype.

By case analysis, and using the ordering properties of Def, we can show that

’a lift is an instance of class flat. Because flat is a subclass of chfin, this means also

that every value of type ’a lift is compact.

In order to use lift case to define continuous functions, we need to prove a

continuity rule for it. We start with a lemma that lets us express lift case using

Rep lift and fup. Having expressed lift case in terms of other continuous functions,

it is now easy to show the continuity of lift case.

lemma lift case eq:
"(case x of ⊥ ⇒ ⊥ | Def a ⇒ f a) = (case Rep lift x of up·y ⇒ f (undiscr y))"

6The (open) option suppresses the definition of the set constant lift ≡ UNIV.
7Another sensible design choice would be to use type synonym ’a lift = "’a discr u".



www.manaraa.com

54

lemma cont2cont lift case [simp]:
"J∧a. cont (λx. f x a); cont (λx. g x)K

=⇒ cont (λx. case g x of ⊥ ⇒ ⊥ | Def a ⇒ f x a)"

To facilitate the definition of continuous functions on type ’a lift, we define com-

binators flift1 and flift2. From cont2cont lift case, we derive a continuity rule for

flift1 (not shown).

definition flift1 :: "(’a ⇒ ’b::pcpo) ⇒ (’a lift → ’b)"
where "flift1 f = (Λ x. case x of ⊥ ⇒ ⊥ | Def a ⇒ f a)"

definition flift2 :: "(’a ⇒ ’b) ⇒ (’a lift → ’b lift)"
where "flift2 f = flift1 (λx. Def (f x))"

We also define the syntax (Λ(Def x). t) to represent flift1 (λx. t).

Lifted unit type. We define the standard LCF type one as a type synonym for

unit lift. We proceed to define the constructor ONE and a case combinator one case

(strict in its second argument), as shown. We also prove the expected ordering

properties and rewrite rules for these constants.

type synonym one = "unit lift"

definition ONE :: "one"
where "ONE = Def ()"

definition one case :: "’a → one → ’a"
where "one case = (Λ x (Def u). x)"

We define the syntax (case x of ONE ⇒ t) to represent one case·t·x, and (Λ ONE. t)

to represent one case·t.

Lifted boolean type. The LCF type of truth values, tr, is defined as a synonym

for bool lift. This type has constructors TT and FF; its case combinator tr case is

the continuous if-then-else operator.

type synonym tr = "bool lift"



www.manaraa.com

55

definition TT :: "tr"
where "TT = Def True"

definition FF :: "tr"
where "FF = Def False"

definition tr case :: "’a → ’a → tr → ’a"
where "tr case = (Λ x y (Def b). if b then x else y)"

We define the syntax (If t then x else y) to represent tr case·x·y·t. Note that we use

“If” with a capital letter to distinguish from the standard if-then-else operation on

type bool, which uses lowercase “if”.

2.4.6 Strict product type

The strict product (also known as “smash product”) is one of the standard con-

structions in domain theory [GS90, Gun92, AC98]. If D and E are pointed cpos,

then D ⊗ E is also a pointed cpo. Its elements are strict pairs of the form Lx, yM,

where x ∈ D and y ∈ E. Strict pairs where either component equals ⊥ are

identified with the bottom element of D ⊗ E, so that Lx,⊥M = L⊥, yM = ⊥.

In HOLCF ’11, we define the strict product of ’a and ’b as a subset of the

cartesian product type ’a × ’b. The type consists of those pairs where neither

element is ⊥, plus the pair ⊥ = (⊥, ⊥).

pcpodef (’a, ’b) sprod (infixr "⊗" 20) =
"{p::(’a::pcpo × ’b::pcpo). p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}"

The proof obligations for pcpodef are that the set contains ⊥, and set membership

is admissible. Both goals are solved immediately by simplification. (Note that as

⊥ is compact, being non-⊥ is an admissible predicate.) The Cpodef package

generates a set of lemmas analogous to those listed in Fig. 2.7, plus a few more

about the strictness of Rep sprod and Abs sprod (see Fig. 2.11).



www.manaraa.com

56

definition sprod def: "sprod ≡ {p. p = ⊥ ∨ (fst p 6= ⊥ ∧ snd p 6= ⊥)}"

theorem Rep sprod inverse: "Abs sprod (Rep sprod x) = x"

theorem Abs sprod inverse: "y ∈ sprod =⇒ Rep sprod (Abs sprod y) = y"

theorem Rep sprod: "Rep sprod x ∈ sprod"

theorem Rep sprod inject: "(Rep sprod x = Rep sprod y) = (x = y)"

definition below sprod def: "(op v) ≡ (λx y. Rep sprod x v Rep sprod y)"

theorem cont Rep sprod: "cont f =⇒ cont (λx. Rep sprod (f x))"

theorem cont Abs sprod: "J∧x. f x ∈ sprod; cont fK =⇒ cont (λx. Abs sprod (f x))"

theorem compact sprod: "compact (Rep sprod x) =⇒ compact x"

theorem Rep sprod strict: "Rep sprod ⊥ = ⊥"

theorem Abs sprod strict: "Abs sprod ⊥ = ⊥"

Figure 2.11: Selected theorems generated by pcpodef for strict product type

Constructor function. The first operation we define is the strict pair construc-

tor, spair. The definition uses the operator seq to ensure that if either a or b is ⊥,

then both components of the resulting pair will be ⊥.

definition spair :: "’a → ’b → (’a ⊗ ’b)"
where "spair = (Λ a b. Abs sprod (seq·b·a, seq·a·b))"

We also define syntax for strict tuples. The expression (:a, b:) is syntax for spair·a·b;

larger tuples nest to the right, so (:a, b, c:) means spair·a·(spair·b·c).

In order to prove properties about spair, we need to know how Rep sprod acts

on it. We start by proving (seq·b·a, seq·a·b) ∈ sprod as a lemma. Then we can

use cont Abs sprod and Abs sprod inverse (provided by the Cpodef package) to

beta-reduce the definition of spair and prove the desired rule:

lemma Rep sprod spair: "Rep sprod (:a, b:) = (seq·b·a, seq·a·b)"



www.manaraa.com

57

Together with a group of other rewrite rules, the lemma Rep sprod spair forms

part of a general strategy for proving properties about strict products. The rules

in Rep sprod simps replace comparisons on type ’a ⊗ ’b with comparisons on the

component types ’a and ’b.

lemma Rep sprod simps:
"x = y ←→ Rep sprod x = Rep sprod y"
"x v y ←→ Rep sprod x v Rep sprod y"
"t = u ←→ fst t = fst u ∧ snd t = snd u"
"t v u ←→ fst t v fst u ∧ snd t v snd u"
"Rep sprod (:a, b:) = (seq·b·a, seq·a·b)"
"Rep sprod ⊥ = ⊥"

Each of the following five lemmas is proved automatically by simplifying with

Rep sprod simps. (The if-and-only-if rules also require seq conv if, so that the sim-

plifier will do the appropriate case splits on whether or not values equal ⊥.)

lemma spair strict1 [simp]: "(:⊥, b:) = ⊥"

lemma spair strict2 [simp]: "(:a, ⊥:) = ⊥"

lemma spair bottom iff [simp]: "(:a, b:) = ⊥ ←→ a = ⊥ ∨ b = ⊥"

lemma spair below iff: "(:a, b:) v (:c, d:) ←→
a = ⊥ ∨ b = ⊥ ∨ (a v c ∧ b v d)"

lemma spair eq iff: "(:a, b:) = (:c, d:) ←→
(a = c ∧ b = d) ∨ ((a = ⊥ ∨ b = ⊥) ∧ (c = ⊥ ∨ d = ⊥))"

The same set of rewrite rules also works for proving a case analysis rule for

type ’a ⊗ ’b. The proof of sprodE starts by inserting the fact Rep sprod y ∈ sprod

into the goal state. Then we unfold the definition of sprod, and use the auto tactic

to split the disjunctions and simplify.

lemma sprodE:
"Jy = ⊥ =⇒ P; ∧a b. Jy = (:a, b:); a 6= ⊥; b 6= ⊥K =⇒ PK =⇒ P"

The induction rule for strict products is a direct consequence of the case analysis

rule.



www.manaraa.com

58

lemma sprod induct: "JP ⊥; ∧a b. Ja 6= ⊥; b 6= ⊥K =⇒ P (:a, b:)K =⇒ P x"

One more useful rule about spair concerns compactness. We can use the lemma

compact sprod provided by the Cpodef package together with Rep sprod spair to

prove the following rule.

lemma compact spair: "Jcompact a; compact bK =⇒ compact (:a, b:)"

Projections. After the constructor spair, the next functions we define are the

projections sfst and ssnd. We can easily unfold and beta-reduce their definitions,

because fst, snd, and Rep sprod are all known to be continuous.

definition sfst :: "(’a ⊗ ’b) → ’a"
where "sfst = (Λ p. fst (Rep sprod p))"

definition ssnd :: "(’a ⊗ ’b) → ’b"
where "ssnd = (Λ p. snd (Rep sprod p))"

The basic properties of sfst and ssnd can be proven by beta-reducing their defini-

tions, and simplifying with Rep sprod simps.

lemma sfst strict [simp]: "sfst·⊥ = ⊥"

lemma ssnd strict [simp]: "ssnd·⊥ = ⊥"

lemma sfst spair [simp]: "y 6= ⊥ =⇒ sfst·(:x, y:) = x"

lemma ssnd spair [simp]: "x 6= ⊥ =⇒ ssnd·(:x, y:) = y"

Case combinator. The last operation on strict products that we need to define

is the case combinator, ssplit.

definition ssplit :: "(’a → ’b → ’c) → (’a ⊗ ’b) → ’c"
where "ssplit = (Λ f p. seq·p·(f·(sfst·p)·(ssnd·p)))"

The characteristic lemmas for ssplit are proved easily by unfolding the definition.

Note that the use of seq in the definition of ssplit is needed for the strictness rule

to hold.



www.manaraa.com

59

Figure 2.12: Strict sum of pointed cpos

lemma ssplit simps [simp]:
"ssplit·f·⊥ = ⊥"
"Jx 6= ⊥; y 6= ⊥K =⇒ ssplit·f·(:x, y:) = f·x·y"

The syntax (case x of (:a, b:) ⇒ t) stands for ssplit·(Λ a b. t)·x. We also support

lambda syntax: (Λ (:a, b:). t) is shorthand for ssplit·(Λ a b. t). Larger tuples work

too; for example, (Λ (:a, b, c:). t) translates to ssplit·(Λ a. ssplit·(Λ b c. t)).

2.4.7 Strict sum type

The strict sum D⊕E (also known as “smash sum” or “coalesced sum”) is another

standard construction in domain theory [GS90, Gun92, AC98]. If D and E are

pointed cpos, then D ⊕ E is also a pointed cpo. There are continuous injections

ι1 : D → D ⊕ E and ι2 : E → D ⊕ E, similar to the disjoint sum. But unlike

the disjoint sum, we identify the bottom elements injected from D and E, making

each injection strict: ι1(⊥) = ι2(⊥) = ⊥ (see Fig. 2.12).

In HOLCF ’11, we define the strict sum of ’a and ’b as a set of triples of

type (tr × ’a × ’b). The first component is a tag specifying whether the value

should be interpreted as a left- or right-injection. Depending on the value of the

tag, the injected value is stored in either the second or third slot, with the other

slot containing ⊥. The bottom element of the strict sum type is represented as

⊥ = (⊥, ⊥, ⊥).

pcpodef (’a, ’b) ssum (infixr "⊕" 10) =
"{p :: (tr × ’a::pcpo × ’b::pcpo). p = ⊥ ∨



www.manaraa.com

60

(fst p = TT ∧ fst (snd p) 6= ⊥ ∧ snd (snd p) = ⊥) ∨
(fst p = FF ∧ fst (snd p) = ⊥ ∧ snd (snd p) 6= ⊥) }"

The proof obligations for pcpodef are that the set contains ⊥, and set membership

is admissible. As with the strict product, both goals are solved immediately by

simplification. For the strict sum type, the Cpodef package provides a set of

theorems just like the ones shown in Fig. 2.11 for strict product; we omit the strict

sum versions here.

Constructor functions. After defining the type, we can define the constructor

functions sinl and sinr.8 Because both constructor functions are supposed to be

strict, we use the seq operator to ensure that the tag component is ⊥ whenever

the constructor argument is ⊥.

definition sinl :: "’a → (’a ⊕ ’b)"
where "sinl = (Λ a. Abs ssum (seq·a·TT, a, ⊥))"

definition sinr :: "’b → (’a ⊕ ’b)"
where "sinr = (Λ b. Abs ssum (seq·b·FF, ⊥, b))"

Similarly to the strict product, the next thing we must do is prove how Rep ssum

acts on the constructors. After proving lemmas to the effect that (seq·a·TT, a, ⊥)

and (seq·b·FF, ⊥, b) are always in the set ssum, we can use cont Abs ssum and

Abs ssum inverse to derive the following two rules.

lemma Rep ssum sinl: "Rep ssum (sinl·a) = (seq·a·TT, a, ⊥)"

lemma Rep ssum sinr: "Rep ssum (sinr·b) = (seq·b·FF, ⊥, b)"

These are combined with other lemmas about Rep ssum to form Rep ssum simps,

which is the strict-sum analog of Rep sprod simps from the previous section. This

set of rewrite rules lets us reduce comparisons on type ’a ⊕ ’b to comparisons on

8The names of sinl and sinr come from earlier versions of LCF; respectively they stand for
“strict-injection-left” and “strict-injection-r ight”.



www.manaraa.com

61

lemma sinl below

lemma sinr below

lemma sinl below sinr

lemma sinr below sinl

[simp]: "(sinl·x v sinl·y) = (x v y)"

[simp]: "(sinr·x v sinr·y) = (x v y)"

[simp]: "(sinl·x v sinr·y) = (x = ⊥)"

[simp]: "(sinr·x v sinl·y) = (x = ⊥)"

lemma sinl eq

lemma sinr eq

lemma sinl eq sinr

lemma sinr eq sinl

[simp]: "(sinl·x = sinl·y) = (x = y)"

[simp]: "(sinr·x = sinr·y) = (x = y)"

[simp]: "(sinl·x = sinr·y) = (x = ⊥ ∧ y = ⊥)"

[simp]: "(sinr·x = sinl·y) = (x = ⊥ ∧ y = ⊥)"

lemma sinl strict

lemma sinr strict

lemma sinl bottom iff

lemma sinr bottom iff

[simp]: "sinl·⊥ = ⊥"

[simp]: "sinr·⊥ = ⊥"

[simp]: "(sinl·x = ⊥) = (x = ⊥)"

[simp]: "(sinr·x = ⊥) = (x = ⊥)"

Figure 2.13: Order, injectivity, distinctness, and strictness of sinl and sinr

types tr, ’a and ’b. We can use them (together with seq conv if, as needed) to prove

the complete set of simplification rules for sinl and sinr shown in Fig. 2.13.

The same rewrites are also sufficient to prove the case analysis rule for the

strict sum type. Starting with the fact Rep ssum y ∈ ssum (a theorem provided by

Cpodef), we can unfold the definition of ssum and then use Rep ssum simps with

the auto tactic to complete the proof.

lemma ssumE: "Jy = ⊥ =⇒ P;∧a. Jy = sinl·a; a 6= ⊥K =⇒ P; ∧b. Jy = sinr·b; b 6= ⊥K =⇒ PK =⇒ P"

The induction rule for strict sums is a direct consequence of the case analysis rule.

lemma ssum induct:
"JP ⊥; ∧a. a 6= ⊥ =⇒ P (sinl·a); ∧b. b 6= ⊥ =⇒ P (sinr·b)K =⇒ P x"



www.manaraa.com

62

We can prove if-and-only-if compactness rules for sinl and sinr. For the (⇐=)

direction, we use a compactness rule provided by Cpodef: A value of type

’a ⊕ ’b is compact if its representation in type tr × ’a × ’b is compact. The

proof of the (=⇒) direction uses the definition of compactness and the adm subst

rule. We assume compact (sinl·a), which means adm (λx. sinl·a 6v x); this implies

adm (λx. sinl·a 6v sinl·x), which simplifies to adm (λx. a 6v x), which is the defini-

tion of compact a. The proof for sinr is identical.

lemma compact sinl iff [simp]: "compact (sinl·a) = compact a"

lemma compact sinr iff [simp]: "compact (sinr·b) = compact b"

Case combinator. Besides the constructors sinl and sinr, the other basic oper-

ation on strict sums is the case combinator, sscase. The definition uses Rep ssum

to examine its argument, and the continuous if-then-else operation on type tr to

select which branch to take.

definition sscase :: "(’a → ’c) → (’b → ’c) → (’a ⊕ ’b) → ’c"
where "sscase = (Λ f g s. (λ(t, x, y). If t then f·x else g·y) (Rep ssum s))"

Using lemma cont Rep ssum from the Cpodef package, it is easy to show that the

abstractions used in the definition of sscase are continuous. Proving the charac-

teristic properties of sscase is a simple matter of beta-reducing the definition and

simplifying with Rep ssum simps.

lemma sscase simps [simp]:
"sscase·f·g·⊥ = ⊥"
"x 6= ⊥ =⇒ sscase·f·g·(sinl·x) = f·x"
"y 6= ⊥ =⇒ sscase·f·g·(sinr·y) = g·y"

As with the other case combinators, we define special syntax for sscase. The term

sscase·(Λ a. t)·(Λ b. u)·x is rendered as (case x of sinl·a ⇒ t | sinr·b ⇒ u).



www.manaraa.com

63

2.5 AUTOMATING CONTINUITY PROOFS

When reasoning in HOLCF, continuity goals pop up all the time: Every beta-

reduction of a continuous function abstraction requires a continuity proof. Con-

tinuity proofs are also needed, for example, to show admissibility of predicates

like (λx. f x v g x). Because they occur so often in practice, it is important that

continuity proofs be both automatic and efficient—they should involve a minimal

number of proof steps, and be processed in a short amount of time.

In this section we discuss three alternative proof techniques for continuity,

starting with the method used by previous versions of HOLCF. Following this, we

introduce two novel proof methods for continuity, each of which offers improved

efficiency in terms of number of proof steps and running time.

2.5.1 Original HOLCF continuity tactic

HOLCF ’95 introduced a continuity tactic that repeatedly applied the following

four continuity lemmas:

lemma cont id: "cont (λx. x)"

lemma cont const: "cont (λx. c)"

lemma cont2cont APP:
"Jcont (λx. f x); cont (λx. t x)K =⇒ cont (λx. (f x)·(t x))"

lemma cont2cont LAM:
"J∧x. cont (λy. f x y); ∧y. cont (λx. f x y)K =⇒ cont (λx. Λ y. f x y)"

If we add these four rules to the simplifier, then we will be able to prove

continuity automatically for any term written in the LCF sub-language—i.e., any

term consisting of continuous applications, continuous abstractions, and variables

and constants with continuous function types. Looking at the forms of the rules, we

can see that the terms in the assumptions are all strictly smaller than the terms



www.manaraa.com

64

lemma "cont (λx. Λ a b c. f·a·b·c·x)"
apply (intro cont2cont LAM)

goal (8 subgoals):
1. ∧x a b. cont (λc. f·a·b·c·x)
2. ∧x a c. cont (λb. f·a·b·c·x)
3. ∧x b a. cont (λc. f·a·b·c·x)
4. ∧x b c. cont (λa. f·a·b·c·x)
5. ∧a x b. cont (λc. f·a·b·c·x)
6. ∧a x c. cont (λb. f·a·b·c·x)
7. ∧a b x. cont (λc. f·a·b·c·x)
8. ∧a b c. cont (λx. f·a·b·c·x)

Figure 2.14: Exponential blow-up using rule cont2cont LAM

in the conclusions, showing that the process of applying rules must eventually

terminate.

But while the proofs may be automatic, they are not efficient. The problem lies

specifically with the rule cont2cont LAM. Consider what happens when we have a

term with multiple nested function abstractions (see Fig. 2.14). After repeatedly

applying rule cont2cont LAM as many times as possible, we are left with eight

subgoals. In fact, the number of subgoals is equal to 2n, where n is the number of

nested lambdas.

However, it is immediately evident that many of these subgoals are really the

same; there are only (n+1) distinct subgoals, each requiring continuity with respect

to a different variable. This suggests the possibility of solving continuity goals in

less than an exponential number of steps.

2.5.2 Bottom-up continuity proofs

One possible strategy is to work bottom-up: First prove continuity for the small

subterms, and then combine those proofs to get continuity over the larger terms.



www.manaraa.com

65

have a0: "cont (λa. a)" by (rule cont id)
from cont const a0 have a1: "cont (λa. f·a)" by (rule cont2cont APP)
from a1 cont const have a2: "∧b. cont (λa. f·a·b)" by (rule cont2cont APP)

...

from ... have a4: "∧b c x. cont (λa. f·a·b·c·x)" by (rule cont2cont APP)
from ... have b4: "∧a c x. cont (λb. f·a·b·c·x)" by (rule cont2cont APP)
from ... have c4: "∧a b x. cont (λc. f·a·b·c·x)" by (rule cont2cont APP)
from ... have x4: "∧a b c. cont (λx. f·a·b·c·x)" by (rule cont2cont APP)

from c4 and a4 have a5: "∧b x. cont (λa. Λ c. f·a·b·c·x)" by (rule cont2cont LAM)
from c4 and b4 have b5: "∧a x. cont (λb. Λ c. f·a·b·c·x)" by (rule cont2cont LAM)
from c4 and x4 have x5: "∧a b. cont (λx. Λ c. f·a·b·c·x)" by (rule cont2cont LAM)

from b5 and a5 have a6: "∧x. cont (λa. Λ b c. f·a·b·c·x)" by (rule cont2cont LAM)
from b5 and x5 have x6: "∧a. cont (λx. Λ b c. f·a·b·c·x)" by (rule cont2cont LAM)

from a6 and x6 have x7: "cont (λx. Λ a b c. f·a·b·c·x)" by (rule cont2cont LAM)

Figure 2.15: Bottom-up algorithm for proving continuity, using forward proof

Note that this is basically opposite to the introduction-rules approach, which works

top-down. For each subterm, we construct a list of continuity theorems, one for

each bound variable that occurs free in the subterm. For example, when proving

cont (λx. Λ a b c. f·a·b·c·x), the subterm (Λ c. f·a·b·c·x) will have continuity theo-

rems for the variables a, b and x (shown in Fig. 2.15 as a5, b5, and x5). We treat

f like a constant, because it is free in the original goal.

Next we move up to the next larger subterm, (Λ b c. f·a·b·c·x), which gets

continuity theorems for the variables a and x (shown as a6 and x6). Each of the new

continuity theorems is derived from two earlier ones using the rule cont2cont LAM.

Note that rule b5 is used more than once; such re-use prevents the exponential

blow-up that we had before.



www.manaraa.com

66

The bottom-up algorithm is now implemented in HOLCF ’11 (HOLCF/Tools/

cont_proc.ML). It has the advantage of being fast: It solves continuity subgoals

using a small number of rule applications (quadratic in the number of nested

lambdas, rather than exponential). Another advantage is that without any extra

work, the algorithm can return a whole list of continuity theorems that it proved

for subterms. This is useful for doing multiple beta-reductions, for example when

proving something like (Λ a b c. f·a·b·c·x)·u·v·w = f·u·v·w·x. This technique is used

successfully by the Domain package for internal proofs, where large subgoals of

this form arise from large datatype definitions (see Sec. 4.3).

Compared to using introduction rules, the main disadvantage of the bottom-

up algorithm is that it is difficult to extend the system to handle new constants.

For example, when Müller introduced the lift type to allow mixing HOL and LCF

terms, he was able to extend the continuity tactic by simply adding a couple of

new rules, such as the one below for lift case [Mül98, §5.2.2] [MNOS99, §4.3.2].

lemma cont2cont lift case:
"J∧y. cont (λx. f x y); cont (λx. g x)K

=⇒ cont (λx. case g x of ⊥ ⇒ ⊥ | Def y ⇒ f x y)"

Similarly, we have continuity rules for operations on the HOL product type:

lemma cont2cont Pair:
"Jcont (λx. f x); cont (λx. g x)K =⇒ cont (λx. (f x, g x))"

lemma cont2cont prod case:
"J∧a b. cont (λx. f x a b); ∧x b. cont (λa. f x a b);∧x a. cont (λb. f x a b); cont (λx. g x)K

=⇒ cont (λx. case g x of (a, b) ⇒ f x a b)"

An ideal continuity prover should allow users to add support for new constants by

adding such rules. But as implemented, the bottom-up continuity algorithm is not

so easily extensible. Properly supporting rules like cont2cont prod case is especially

troublesome because, like cont2cont LAM, it has multiple hypotheses for the same

subterm, and would require similar handling to avoid an exponential blow-up.



www.manaraa.com

67

Yet the rule has a different form than cont2cont LAM. A single algorithm that

could handle the full range of possibilities for such rules would have to be rather

sophisticated.

2.5.3 Efficient continuity rules using products

As it turns out, it is possible to design an extensible set of continuity introduction

rules that avoids the exponential blow-up inherent in the original HOLCF ’95

continuity tactic. The key to designing these rules is a property of continuous

functions f : D×E → F . It is a standard result in domain theory that a function

on a product type is continuous if and only if it is continuous in each component

separately [AJ94, Lemma 3.2.6]. This property is formalized in the HOLCF ’11

theory of products as lemma prod cont iff.

lemma prod cont iff:
"cont f ←→ (∀y. cont (λx. f (x, y))) ∧ (∀x. cont (λy. f (x, y)))"

We can use this theorem to combine the two premises of the cont2cont LAM rule

into one. Compare the two versions of this rule:

lemma cont2cont LAM:
"J∧x. cont (λy. f x y); ∧y. cont (λx. f x y)K =⇒ cont (λx. Λ y. f x y)"

lemma cont2cont LAM’:
"cont (λp. f (fst p) (snd p)) =⇒ cont (λx. Λ y. f x y)"

We can evaluate the behavior of the new cont2cont LAM’ rule by considering the

same continuity goal we used before in Fig. 2.14. After applying the continuity

rule cont2cont LAM’ three times, we are now left with just a single subgoal (see

Fig. 2.16). The remaining goal can be solved by applying standard continuity

rules (cont id, cont const, and cont2cont APP) together with continuity rules for

fst and snd. The complete set of rules (which we call cont2cont rules) for proving

continuity of LCF terms is shown in Fig. 2.17. All of them are safe to add to the

Isabelle simplifier.



www.manaraa.com

68

lemma "cont (λx. Λ a b c. f·a·b·c·x)"
apply (intro cont2cont LAM’)

goal (1 subgoal):
1. cont (λp. f·(snd (fst (fst p)))·(snd (fst p))·(snd p)·(fst (fst (fst p))))

Figure 2.16: Efficient behavior of continuity introduction rule cont2cont LAM’

lemma cont id [simp]: "cont (λx. x)"

lemma cont const [simp]: "cont (λx. c)"

lemma cont2cont fst [simp]: "cont (λx. f x) =⇒ cont (λx. fst (f x))"

lemma cont2cont snd [simp]: "cont (λx. f x) =⇒ cont (λx. snd (f x))"

lemma cont2cont APP [simp]:
"Jcont (λx. f x); cont (λx. t x)K =⇒ cont (λx. (f x)·(t x))"

lemma cont2cont LAM’ [simp]:
"cont (λp. f (fst p) (snd p)) =⇒ cont (λx. Λ y. f x y)"

Figure 2.17: Complete set of efficient cont2cont rules for LCF terms



www.manaraa.com

69

Unlike rule cont2cont LAM, each rule in Fig. 2.17 has only one continuity

premise for each subterm. Proving continuity with this set of rules requires more

than a linear number of steps, though, because as lambdas are eliminated, the

subgoal grows to a larger size: fst and snd are introduced on every bound variable.

But the size increase is not exponential; it is merely quadratic in the number of

nested lambdas. So, like the bottom-up algorithm, the cont2cont rules can dis-

charge a continuity goal with nested lambdas in a quadratic number of steps. In

practice, the run-time efficiency of the cont2cont rules is about the same as for the

bottom-up continuity tactic. (Either can discharge a continuity goal with twenty

nested lambdas in a fraction of a second, and the total run-time for each seems to

be O(n3).)

The cont2cont rules are easily extensible. We can add new rules to the simplifier

for each new constant we want (such as cont2cont lift case) without any trouble.

For constants like prod case, whose continuity rules require continuity of multiple

variables over the same subterm, we can use prod cont iff to derive an efficient

version of the rule, just like we did for cont2cont LAM. For example, here is the

efficient cont2cont rule for prod case:

lemma cont2cont prod case’ [simp]:
"Jcont (λp. f (fst p) (fst (snd p)) (snd (snd p))); cont (λx. g x)K

=⇒ cont (λx. case g x of (a, b) ⇒ f x a b)"

For organizing continuity introduction rules, HOLCF ’11 provides a special

cont2cont theorem attribute. Declaring a lemma with [cont2cont] dynamically

adds it to a list of theorems, which is also referred to by the name cont2cont.

(Typically each cont2cont rule should also be added to the simplifier.) Users can

then do continuity proofs with the proof method “intro cont2cont”.

Using “intro cont2cont” is a bit faster (by about a factor of two) than calling

“simp” on a continuity goal, because it has a smaller, targeted set of rules, and

avoids deep recursive calls to the simplifier. To take advantage of this speedup



www.manaraa.com

70

in the common case, HOLCF ’11 defines a special simplification procedure (or

“simproc”) for the beta reduction rule:

lemma beta cfun: "cont f =⇒ (Λ x. f x)·u = f u"

In HOLCF ’11, beta cfun is not declared with the [simp] attribute. Instead, the

simplifier is configured to call a certain simproc when it sees a term matching the

pattern (Λ x. f x)·u. When the simproc is run, it tries to prove the goal cont f

using the proof method “intro cont2cont”. If the subproof succeeds, the simproc

returns the unconditional equation (Λ x. f x)·u = f u; if the subproof fails, then the

simproc returns the ordinary conditional rule, which will then cause the simplifier

to attempt to solve the side-condition cont f by calling itself recursively.

A nice feature of this setup is that users do not have to know anything about

the cont2cont attribute; if a user proves a continuity rule for a new constant, and

declares it with [simp], then it will work with the other existing cont2cont rules as

expected. Declaring the same rule with [cont2cont] is optional, and will not affect

the set of provable continuity goals; the only effect is that the same continuity

goals will be proved more quickly when doing beta reduction.

2.6 EVALUATION

This chapter has described the core of the HOLCF ’11 libraries, consisting of

the type class hierarchy, various notions of domain theory such as continuity and

admissibility, and the definition of all the basic HOLCF types.

The material presented in this chapter was mostly present in some form or other

in Regensburger’s original HOLCF ’95 [Reg94, Reg95]. However, the new HOLCF

’11 offers various improvements over the original. The primary novel contributions

of this work are threefold: the Cpodef package, the improved automation for

continuity proofs, and the use of compactness for proving admissibility.



www.manaraa.com

71

Cpodef. The Cpodef package provides a very convenient, streamlined way to

define new types in HOLCF ’11. Using the Cpodef package can result it a big

reduction in the size and complexity of proof scripts. For example, in HOLCF

’99, the theory of strict products comprised over 900 lines of definitions and proof

scripts; after converting the theory to use the Cpodef package, this was reduced

to less than 200 lines of code. Similarly, defining the strict sum type with Cpodef

reduced that theory file from over 1300 lines to less than 300.

Of all the HOLCF ’11 types not defined with Cpodef, the lifted cpo type ’a u

is the one with the most difficult cpo instance proofs. Unfortunately it seems that

no suitable cpo exists from which ’a u could be defined as a subtype, although

there is one that comes close:

pcpodef ’a u2 = "{p::one × ’a. p = ⊥ ∨ fst p = ONE}"

The above definition only works if type ’a is already pointed, however; in contrast,

the currently implemented definition works for any ’a in class cpo.

Continuity proofs. The original Edinburgh LCF and Cambridge LCF systems

[GMW79, Pau87] did not require proofs of continuity, because reasoning was done

in the LCF logic, which does not have an explicit concept of continuous functions.

In contrast, using HOLCF means reasoning about LCF terms and formulas, in

higher-order logic. Because higher-order logic can express non-continuous functions

that are not expressible in LCF, systems like HOLCF that model LCF in higher-

order logic must reason explicitly about continuity.

The HOLCF ’95 continuity tactic could prove the continuity of any function cor-

responding to an LCF term. However, for some terms the tactic was prohibitively

slow: On nested lambda-abstractions like (λx. Λ y. e x y), the tactic would prove

continuity of the body twice, once for each variable. Each additional lambda-

abstraction would double the amount of work required, leading to an exponential

running time.



www.manaraa.com

72

HOLCF ’95 was not the only formalization of LCF to suffer from this problem.

The HOL-CPO system by Sten Agerholm [Age94] is another formalization of LCF

in higher-order logic (though implemented in a different theorem prover), released

contemporaneously with the original HOLCF ’95. In HOL-CPO, continuous func-

tion types are represented as subsets of a full function type. Continuity proofs are

performed by a “type-checker”, which proves that a given function is an element of

a particular continuous function type. For abstractions of the form (λx. λy. e x y),

the type-checker traverses the body twice, proving continuity separately in x and y

[Age94, §5.2.2]. In other words, it works just like the HOLCF ’95 continuity tactic:

Deeply nested abstractions would cause the same exponential run-time behavior.

The HOL-CPO system does provide a potential workaround: It defines com-

binators like curry f = (λx y. f (x, y)), with which users can write multi-argument

functions without using nested lambdas. For example, the three-argument func-

tion (λx y z. e[x, y, z]) could be written instead as curry (curry (λp. e[fst (fst p), snd

(fst p), snd p])). Using curry permits continuity proofs with the efficiency of the

HOLCF ’11 cont2cont rules, at the expense of being more cumbersome to use.

The improved automation for continuity makes HOLCF ’11 useful for reason-

ing about a larger set of programs. In particular, it is now practical to reason

about functions with a large number of arguments. For example, beta-reducing a

function of a dozen arguments with the old continuity tactic could easily take a

minute or more; the new continuity rules can reduce the same function in a frac-

tion of a second. A faster continuity checker also makes larger datatype definitions

more practical, because the Domain package performs many beta-reductions in

its internal proofs.

Admissibility proofs. In Cambridge LCF, admissibility was not actually for-

malized in the logic. Rather, fixed point induction was accompanied by a hard-

coded syntactic admissibility test [Pau87, page 200]. The test examined both the



www.manaraa.com

73

structure of the formula, and also the chain-finiteness of the types involved. For

example, in LCF the predicate (λx. f x v y −→ g x = h x) would always pass the

admissibility test, while (λx. f x = y −→ g x = h x) would pass only if either x or y

had a chain-finite type. The earlier Edinburgh LCF used a similar test [GMW79,

page 77].

HOLCF ’99 included some proof automation for admissibility, with roughly

the same capabilities as the hard-coded check in Cambridge LCF. The automation

comprised a set of structural rules for various connectives, plus a special admis-

sibility tactic that considered chain-finiteness [MNOS99, Mül98]. The structural

rules included all those in Fig. 2.3, plus the rule "cont t =⇒ adm (λx. t x 6= ⊥)".

(No rules involving compactness were present, as HOLCF ’99 did not have a no-

tion of compactness.) After applying the structural rules, the admissibility tactic

would try to solve any remaining subgoals using adm subst and adm chfin.

lemma adm subst: "Jcont f; adm PK =⇒ adm (λx. P (f x))"

lemma adm chfin [simp]: "adm (λ(x::’a::chfin). P x)"

For example, on the goal adm (λx. f·x = TT −→ g·x = h·x), applying the struc-

tural rules would leave the subgoal adm (λx. f·x 6= TT). Then the tactic would

apply adm subst, leaving the goals adm (λy. y 6= TT) (an instance of adm chfin,

because tr is chain-finite) and cont (λx. f·x) (solvable by the continuity tactic).

Agerholm’s HOL-CPO also includes a prover for admissibility (he calls it “in-

clusiveness”) with capabilities similar to the HOLCF ’99 tactic [Age94, §5.3].

The limitations of the HOLCF ’99 admissibillity tactic were noted by Müller

with regards to his formalization of I/O automata [Mül98, §10.3.2]. One of the

proof scripts in that formalization9 requires admissibility of the predicate (λx. f·x 6=

nil), where nil is a constructor for a recursive list type that is not chain-finite. When

the proof script was written, no applicable lemmas were available to assist with

9Müller’s formalization is included with the Isabelle distribution, in the HOLCF/IOA directory.



www.manaraa.com

74

a proof of admissibility; Müller resorted to declaring an axiom (no doubt with

the intention that it be temporary!) rather than unfolding the definition and

attempting a manual proof. In HOLCF ’11, with the new compactness rules for

admissibility in place, the same admissibility goal is solved automatically by the

simplifier.

In HOLCF ’11, the sophisticated HOLCF ’99 tactic for proving admissibil-

ity with adm subst and adm chfin has been discontinued, because it is no longer

necessary. In practice, it was nearly always used in situations where one of the lem-

mas adm compact not below, adm neq compact, or adm compact neq from Fig. 2.4

would now apply. These rules are strictly more powerful than the HOLCF ’99

admissibility tactic on such subgoals, because they are not limited to chain-finite

types.



www.manaraa.com

75

Chapter 3

RECURSIVE VALUE DEFINITIONS: THE FIXREC PACKAGE

3.1 INTRODUCTION

In Haskell and most other functional programming languages, recursive definitions

are supported directly: In the definition of a function, the constant being defined

may occur freely on the right-hand side. This is in contrast to a theorem prover

like Isabelle, whose primitive definitions are required to be non-recursive in order

to guarantee logical soundness.

In Isabelle, a recursive specification of a new constant cannot be used directly

as a definition. The specification must be used indirectly: First, the recursive

specification must be somehow transformed into a non-recursive definition of the

constant. Second, this definition can then be used to prove the original specification

as a theorem.

Isabelle/HOL already includes a number of packages that mechanize this kind

of process for certain kinds of recursive definitions. The Datatype package pro-

vides the primrec command for defining primitive-recursive functions over data-

types [NPW02]; the Recdef and Function packages define functions that use

well-founded recursion [Sli96, Kra10a].

In HOLCF ’99, no definition package for general recursive functions existed;

such functions could only be defined by explicitly using the domain-theoretic fixed

point combinator fix. Users had to derive recursive equations manually, using

the theory of least fixed points. This chapter introduces the Fixrec package for

Isabelle/HOLCF, which automates this process: Users of HOLCF ’11 can now use



www.manaraa.com

76

Fixrec to formalize Haskell-style recursive function definitions directly.

Contributions. The current implementation of Fixrec derives from the origi-

nal version by Amber Telfer in 2004 [Tel04]. Since then, many new features have

been added by the present author: The current version supports mutual recursion,

and curried functions with any number of arguments. It also supports a wider class

of patterns: Function definitions can use lazy or strict constructors, including con-

structors from Isabelle/HOL datatypes; definitions with overlapping patterns are

also supported. The package is now suitable for verifying real Haskell programs:

Some example case studies using Fixrec, including proofs by least fixed point

induction, can be found in Chapter 7.

Overview. The remainder of this chapter starts by describing the features of

the Fixrec package, from a user’s point of view (§3.2). Then we establish an

implementation strategy, showing how to translate lists of function equations into

non-recursive definitions by expressing recursion with a fixed point combinator

(§3.3) and performing pattern match compilation (§3.4). Next are details of the

actual implementation of the Fixrec package (§3.5). Finally, we conclude with a

comparison to related work, and directions for future work (§3.6).

3.2 FIXREC PACKAGE FEATURES

The Fixrec package lets users define recursive functions and values in HOLCF

much like they can in Haskell or ML. Users can write function specifications with

patterns, involving datatypes that may have been defined by the user. Users can

use recursion freely within groups of simultaneously-defined values, with no need

for termination proofs. The Fixrec package generates definitions for constants,

proves each defining equation as a theorem, and also generates induction rules for

reasoning about the new constants.



www.manaraa.com

77

Patterns in Fixrec definitions can mention any of the constructors for basic

HOLCF types (§2.4): spair, sinl, sinr, up, ONE, TT, FF, and also the Pair constructor

( , ) from Isabelle/HOL. Constructors for types defined by the Domain package

are also supported, for instance LNil and LCons from the lazy list type below.

domain ’a llist = LNil | LCons (lazy "’a") (lazy "’a llist")

The syntax for the fixrec command is similar to other definition commands

like primrec or the Function package’s fun command. (A full syntax diagram

is shown in Fig. 3.1.) The equations must be separated by vertical bars; theorem

names for each equation are optional.

fixrec firsts :: "(’a × ’b) llist → ’a llist"
where firsts LNil: "firsts·LNil = LNil"
| firsts LCons: "firsts·(LCons·(x, y)·xs) = LCons·x·(firsts·xs)"

The definition above generates the theorems firsts LNil and firsts LCons. It also

declares a theorem list firsts.simps consisting of all equations in the definition;

these are added to the simplifier by default.

Lazy and strict constructors. The Fixrec package works best with lazy

constructor functions like LCons, Pair and up. It also works with strict constructor

functions, but definedness side conditions like x 6= ⊥ may be required.

fixrec from sinl :: "’a ⊕ ’b → ’a"
where "x 6= ⊥ =⇒ from sinl·(sinl·x) = x"

If the side-condition in the above definition is omitted, the Fixrec package will

not be able to prove the equation, and it will fail with an error message. Note

that combinations of strict and lazy constructors can avoid the need for such side

conditions.

fixrec from sinl up :: "’a⊥ ⊕ ’b → ’a"
where "from sinl up·(sinl·(up·x)) = x"



www.manaraa.com

78

definition:
fixrec fixes where spec

|

fixes:
name :: typ mixfix

name :: typ

and

spec:
opt-thm-name prop

( unchecked )

opt-thm-name:

name :

attribs

attribs

Figure 3.1: Input syntax for Fixrec package



www.manaraa.com

79

Even though sinl is a strict constructor, the side condition up·x 6= ⊥ is not needed.

This is because up is a lazy constructor and Fixrec can determine up·x 6= ⊥

automatically.

Overlapping patterns. The Fixrec package supports definitions with over-

lapping patterns. For example, consider the following function that zips two lists

together: The first equation has specific patterns, while the second equation is a

catch-all default case. The second equation cannot be proved as a theorem because

it only applies when the first pattern fails.

fixrec lzip :: "’a llist → ’b llist → (’a × ’b) llist"
where "lzip·(LCons·x·xs)·(LCons·y·ys) = LCons·(x, y)·(lzip·xs·ys)"
| (unchecked) "lzip·xs·ys = LNil"

Usually Fixrec tries to prove all equations as theorems. The unchecked option

overrides this behavior, so Fixrec does not attempt to prove that particular equa-

tion. With the lzip example, both equations influence the definition of lzip, but

only the first is proved as a theorem. The generated theorem list lzip.simps then

consists of only the first equation.

Generating extra equations. The Fixrec package provides automation for

proving extra equations beyond those included in the function definition. This

takes the form of a proof method called fixrec simp. One use for fixrec simp is to

prove specific rules for functions defined with overlapping patterns, like our earlier

example lzip.

lemma lzip extra simps [simp]:
shows "lzip·(LCons·x·xs)·LNil = LNil" and "lzip·LNil·ys = LNil"
by fixrec simp+

Another common use of the fixrec simp method is to prove strictness rules for

functions.



www.manaraa.com

80

lemma lzip strict [simp]:
shows "lzip·⊥·ys = ⊥" and "lzip·(LCons·x·xs)·⊥ = ⊥"
by fixrec simp+

Functions defined by Fixrec satisfy the same strictness properties that we would

find in Haskell, according to a left-to-right pattern matching strategy. For example,

lzip·⊥·LNil evaluates to ⊥, but the opposite argument order yields a different result:

lzip·LNil·⊥ = LNil.

Non-exhaustive patterns. Unlike other definition packages in Isabelle, the

Fixrec package does not require patterns to be exhaustive.

fixrec lzip2 :: "’a llist → ’b llist → (’a × ’b) llist"
where "lzip2·(LCons·x·xs)·(LCons·y·ys) = LCons·(x, y)·(lzip·xs·ys)"
| "lzip2·LNil·LNil = LNil"

If none of the equations match, the result for those arguments defaults to ⊥. Again,

fixrec simp is useful for generating the additional theorems.

lemma lzip2 LCons LNil: "lzip2·(LCons·x·xs)·LNil = ⊥"
by fixrec simp

Induction rules. The Fixrec package generates a specialized fixed point in-

duction rule for each recursive definition. For example, consider this recursively-

defined while combinator:1

fixrec while :: "(’a → tr) → (’a → ’a) → ’a → ’a"
where [simp del]: "while·p·f·x = (If p·x then while·p·f·(f·x) else x)"

To prove properties about while, we can use the induction rule while.induct provided

by Fixrec. First, the predicate P must be admissible. For the base case, P must

hold for ⊥. For the inductive step, we assume that P holds for an arbitrary function

1The attribute [simp del] prevents the equation being added to the simplifier; this is desirable
because otherwise it would cause the simplifier to loop.



www.manaraa.com

81

w, and then show that it must also hold for an unfolded version of the while function

where recursive calls are replaced by calls to w.

theorem while.induct:
"Jadm P; P ⊥; ∧w. P w =⇒ P (Λ p f x. If p·x then w·p·f·(f·x) else x)K

=⇒ P while"

Note that the induction rules generated by Fixrec are somewhat unusual com-

pared to those generated by Recdef or the Function package. In those packages,

the induction rule for a function uses a predicate on the function’s arguments—in

Fixrec, the predicate P in the induction rule is a predicate on the function it-

self. It is essentially like doing induction over the number of times the function’s

definition is unfolded.

As an example, we can use fixed point induction to prove the following prop-

erty of while: Either the predicate p evaluates to false on the result, or else the

computation diverges.

lemma while post condition: "∀x. p·(while·p·f·x) = FF ∨ while·p·f·x = ⊥"
apply (rule while.induct) ...

In this example, we use the fixed point induction rule while.induct with the predicate

P instantiated to (λw. ∀x. p·(w·p·f·x) = FF ∨ w·p·f·x = ⊥). Admissibility of P and

the base case P ⊥ can be solved automatically by the Isabelle simplifier, while the

inductive step requires a case analysis on p·x.

The definition of while uses only variable patterns, so its fixed point induction

rule looks relatively simple. Fixrec generates a similar (but more complicated-

looking) rule when a function is defined with pattern matching. In this case, a

compiled version of the patterns will appear explicitly in the inductive step. (More

details will be given in Sec. 3.5.4.)

Mutual recursion. The Fixrec package can define multiple functions simul-

taneously, where each one can call any of the others. To define mutually recursive



www.manaraa.com

82

functions, give multiple type signatures separated by the keyword and.

fixrec evenlen :: "’a llist → tr" and oddlen :: "’a llist → tr"
where "evenlen·LNil = TT"
| "evenlen·(LCons·x·xs) = oddlen·xs"
| "oddlen·LNil = FF"
| "oddlen·(LCons·x·xs) = evenlen·xs"

For mutually recursive definitions, Fixrec produces a single fixed point induction

rule that can be used to prove properties of all the recursive constants simulta-

neously. For example, the definition of evenlen and oddlen above yields the rule

evenlen oddlen.induct, where P is a binary predicate of both constants. (The induc-

tive step contains a rather large pattern-match-compiled version of both function

bodies, which we elide here; see Sec. 3.5.6 for the full details.)

theorem evenlen oddlen.induct:
"Jadm (λ(a, b). P a b); P ⊥ ⊥; ∧a b. P a b =⇒ P ... ...K

=⇒ P evenlen oddlen"

We can use this rule to prove, for example, that evenlen diverges if and only if

oddlen also diverges on the same argument.

lemma evenlen bottom iff: "∀xs. evenlen·xs = ⊥ ←→ oddlen·xs = ⊥"
apply (rule evenlen oddlen.induct) ...

In this proof we use the induction rule evenlen oddlen.induct with the predicate

P instantated to (λa b. ∀xs. a·xs = ⊥ ←→ b·xs = ⊥). The admissibility condition

and the base case are both proved automatically, and the inductive step proceeds

by case analysis on xs.

3.3 EXPRESSING RECURSION WITH FIX

In the context of domain theory, we can use the least fixed point combinator to

transform a recursive specification into a non-recursive one. The details of this

transformation will be demonstrated using examples in Haskell. The first example



www.manaraa.com

83

is a simple recursive value that does not take any function arguments; it defines

an infinite list.

trues :: [Bool]
trues = True : trues

To translate this equation to a non-recursive definition, we abstract the right-

hand side over all occurrences of the constant being defined, and apply fix to the

resulting function:

fix :: (a -> a) -> a
fix f = f (fix f)

trues = fix (\r -> True : r)

The next example is similar, but adds a function argument:

repeat :: a -> [a]
repeat x = x : repeat x

To translate the equation for repeat, we first convert the function argument pat-

tern into a lambda abstraction. Then we proceed as before, abstracting over re-

cursive occurrences of repeat, and applying fix.

repeat = \x -> x : repeat x
repeat = fix (\r x -> x : r x)

The third example adds another new feature: multiple equations with patterns.

This function calculates the sum of a list of integers.

sum :: [Int] -> Int
sum [] = 0
sum (x : xs) = x + sum xs

The patterns of the sum function require yet another translation step. We start

by converting the set of pattern-match equations to a single equation with a case

expression. The rest of the translation proceeds as before.



www.manaraa.com

84

sum ys = case ys of [] -> 0; x : xs -> x + sum xs
sum = \ys -> case ys of [] -> 0; x : xs -> x + sum xs
sum = fix (\r ys -> case ys of [] -> 0; x : xs -> x + r xs)

The final example shows how mutually recursive definitions can be translated using

fix. Below we have a list of equations, one for each mutually defined constant.

(In general, we expect that any function arguments or patterns should have been

translated away by this point.)

list1, list2 :: [Bool]
list1 = True : list2
list2 = False : list1

The next step is to use tuples to combine all the equations into one. Now we can

define the tuple of all the new constants using fix, where we use the projections

fst and snd to refer to occurrences of either constant on the right-hand side.

(list1, list2) = (True : list2, False : list1)
(list1, list2) = fix (\r -> (True : snd r, False : fst r))

Finally we define each individual constant by projecting out the components of the

fixed point.

list1 = fst (fix (\r -> (True : snd r, False : fst r)))
list2 = snd (fix (\r -> (True : snd r, False : fst r)))

In summary, the translation from function equations to a fixed point definition

consists of the following four steps:

1. Compile patterns to case-expressions

2. Convert function arguments to lambdas

3. Abstract over recursive calls, and apply fix

4. Project components of fixed point tuple (if necessary)

The later sections of this chapter will describe how the Fixrec package automates

all of these steps. Before getting into the implementation details of the package, we

will first describe the approach to pattern-match compilation that Fixrec uses.



www.manaraa.com

85

oddfsts :: [(a, b)] -> [a]
oddfsts ((a, b) : y : zs) = a : oddfsts zs
oddfsts [(a, b)] = [a]
oddfsts [] = []

Figure 3.2: A Haskell function definition with nested patterns

3.4 PATTERN MATCH COMPILATION

The pattern-matching example in the previous section used only simple patterns

like [] and x : xs. The meaning of functions with such patterns is relatively

straightforward. But things get more complicated when functions use nested pat-

terns, where constructors are applied to one or more sub-patterns instead of just

variables. Figure 3.2 shows an example of a Haskell function using nested patterns,

which returns the first component of every other element from a list of pairs.

Pattern match equations with nested patterns can get rather complex. We will

specify the meaning of a list of pattern match equations by “compiling” them down

to a combination of simpler building blocks. This pattern match compilation can

be implemented in various ways. The remainder of this section will describe a

couple of alternative approaches, finishing with the specific design currently used

by the Fixrec package.

3.4.1 Compiling to simple case expressions

One possible approach to pattern match compilation is to convert patterns into

combinations of simple case expressions (i.e. those without nested patterns). A

simple case expression for any given datatype can be written using a case combi-

nator function; combinators for lists and pairs are defined as Haskell functions in

Fig. 3.3.

Figure 3.4 shows the function oddfsts after the patterns have been compiled



www.manaraa.com

86

listcase :: b -> (a -> [a] -> b) -> [a] -> b
listcase z f [] = z
listcase z f (x : xs) = f x xs

paircase :: (a -> b -> c) -> (a, b) -> c
paircase f (x, y) = f x y

Figure 3.3: Combinators for simple case expressions

oddfsts xs = case xs of
[] -> []
x : ys -> case x of

(a, b) -> case ys of
[] -> [a]
y : zs -> a : oddfsts zs

oddfsts xs =
listcase [] (\x ys ->

paircase (\a b ->
listcase [a] (\y zs -> a : oddfsts zs) ys) x) xs

Figure 3.4: Function compiled to simple case expressions, with equivalent case

combinators

down to simple case expressions. It also shows an equivalent definition expressed

using the listcase and paircase combinators.

Algorithms for doing this style of pattern-match compilation are described in

the literature [Wad87]. Such algorithms are implemented as part of various com-

pilers for functional programming languages, and also in existing Isabelle packages

like Recdef [Sli96].

This style of pattern-match compilation has some desirable properties. One

benefit is the efficiency of the compiled code: The case expressions never analyze

the same subterm more than once. Also, simple case expressions are convenient



www.manaraa.com

87

data Maybe a = Nothing | Just a

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Just x >>= k = k x
Nothing >>= k = Nothing

(+++) :: Maybe a -> Maybe a -> Maybe a
Just x +++ y = Just x
Nothing +++ y = y

run :: Maybe a -> a
run (Just x) = x
run Nothing = undefined

Figure 3.5: Maybe monad with fatbar and run operators

to use in Isabelle, because appropriate case combinators are already provided for

each datatype. There are also some drawbacks, however. In definitions with one or

more specific pattern equations followed by a catch-all default case, the compiled

terms can get big, and cleverness is required to avoid duplicating case branches

[Wad87, §5.4.1]. Recdef sidesteps this issue by disallowing overlapping patterns;

however, overlapping patterns are a supported feature of Fixrec (see Sec. 3.2).

To avoid bugs, it is preferable to have an implementation of pattern matching that

is as simple as possible.

3.4.2 Original Fixrec: Monadic pattern matching

This section describes the system used by Telfer’s original implementation of

Fixrec [Tel04]. Inspired by a monadic-style semantics of pattern matching in

Haskell [HSH02], it uses the Maybe type (see Fig. 3.5) to model the possibility of

pattern-match failure.

Each equation in the function definition is treated independently. When the



www.manaraa.com

88

patterns of an equation are matched against a list of arguments, there are three

possible outcomes, each of which can be represented in the Maybe type: A match

can either succeed (Just x), fail (Nothing), or diverge (⊥).

The results of multiple pattern-match equations are combined using the (+++)

operator (written as 8 and called “fatbar” by by Peyton Jones and Wadler [PJ87],

and also implemented as mplus in the Haskell standard libraries). The result

of m1 +++ m2 +++ ... +++ mn equals the first value in the list different from

Nothing. It is straightforward to verify that (+++) is associative.

After the results of all the pattern match equations are combined with the

fatbar operator, we can extract the value of the first successful pattern match

using the run function. If none of the pattern matches are successful (i.e., all

equations evaluate to Nothing), then the result is undefined or ⊥.

In addition to the operators shown in Fig. 3.5, the original Fixrec implemen-

tation also required one match combinator for each constructor that might be used

in patterns. The match combinator for a constructor examines its input value, and

if the constructor matches, returns Just applied to a tuple of the constructor’s ar-

guments; for any other constructor it returns Nothing. Haskell definitions of some

match combinators are given in Fig. 3.6.

To compile a pattern match equation, we start by inventing a fresh variable

name for each sub-pattern. Then we traverse each pattern in a top-down, left-to-

right manner. We produce the corresponding match combinator for each construc-

tor in the pattern, sequencing the combinators using the bind operator (>>=).

Figure 3.7 shows the result of compiling the function oddfsts using the monadic

match combinators. For readability, the monadic terms are shown using Haskell’s

do syntax: do {x <- m; k} stands for m >>= (\x -> k), and do {a; b; c}

means do {a; do {b; c}}.

For implementing a pattern match compiler, the monadic match combinators

offer some benefits compared to simple case combinators. The primary advantage is



www.manaraa.com

89

mNil :: [a] -> Maybe ()
mNil [] = Just ()
mNil (x : xs) = Nothing

mCons :: [a] -> Maybe (a, [a])
mCons [] = Nothing
mCons (x : xs) = Just (x, xs)

mPair :: (a, b) -> Maybe (a, b)
mPair (x, y) = Just (x, y)

Figure 3.6: Monadic match combinators like those used by original Fixrec

oddfsts xs = run (
do { (x, ys) <- mCons xs;

(a, b) <- mPair x;
(y, zs) <- mCons ys;
Just (a : oddfsts zs) }

+++
do { (x, ys) <- mCons xs;

(a, b) <- mPair x;
() <- mNil ys;
Just [a] }

+++
do { () <- mNil xs;

Just [] } )

Figure 3.7: A function compiled using monadic match combinators



www.manaraa.com

90

ease of implementation: The monadic pattern match compiler is a straightforward

algorithm that can be implemented with a small amount of ML code, making

a single traversal of the syntax tree of the pattern. Another advantage is that

the compiled output has a predictable size: The number of match combinators in

the compiled function is always equal to the number of constructors in the input

patterns; in general, the size of the output is always in linear proportion to the

size of the input. In comparison, compilation to simple case combinators may

sometimes yield smaller terms—such as with the example function oddfsts—but

some patterns can yield large output with repeated sub-terms, unless optimizations

are added to handle such cases [Wad87, §5.4.1].

One potential drawback of monadic pattern match compilation is that the run

function requires the final result type to have an undefined or ⊥ value in case

none of the patterns match—even if the patterns are in fact complete. Unlike

with compilation to case combinators, monadic pattern compilation does not offer

an easy way to verify the completeness of patterns. This may be an important

concern for packages that define total functions, such as Recdef or the Isabelle

Function package. However it is not a issue for Fixrec, because the least fixed

point combinator fix already requires the return type to have a bottom element.

3.4.3 New Fixrec: Continuation-based matching combinators

The monadic pattern matching system described above is workable—indeed, it

was sufficient for implementing the original Fixrec package—but it leaves room

for improvement. Specifically, the compiled terms are bigger than they need to

be. Making some simple changes to the definitions of the match combinators will

allow the pattern match compiler to produce equivalent, but smaller output.

Note that in the compiled monadic term in Fig. 3.7, match combinators like

mCons always occur in combination with the monadic bind operator (>>=) and a

tuple binding. Accordingly, we can define new match combinators that have this



www.manaraa.com

91

matNil xs k = do { () <- mCons xs; k }
matCons xs k = do { (a, b) <- mCons xs; k a b }
matPair xs k = do { (a, b) <- mPair xs; k a b }

Figure 3.8: Specification of continuation-based match combinators

matNil :: [a] -> Maybe b -> Maybe b
matNil [] k = k
matNil (x : xs) k = Nothing

matCons :: [a] -> (a -> [a] -> Maybe b) -> Maybe b
matCons [] k = Nothing
matCons (x : xs) k = k x xs

matPair :: (a, b) -> (a -> b -> Maybe c) -> Maybe c
matPair (x, y) k = k x y

Figure 3.9: Definition of continuation-based combinators used by new Fixrec

package

additional functionality built in. Figure 3.8 specifies these new combinators in

terms of the old monadic ones. Figure 3.9 gives the direct definitions—note that

they are just as simple as the old monadic combinators (Fig. 3.6).

The new combinators each take an extra continuation argument, representing

the remainder of the compiled pattern-matching expression. With continuation-

based combinators, bind operators and tuples are no longer needed to compile

patterns. Figure 3.10 shows the example function oddfsts expressed in these new

combinators. In comparison, the monadic compiled term in Fig. 3.7 may appear

to have a similar size, but unfolding the syntactic sugar (do-notation and tuple

bindings) reveals that in terms of the actual number of constants, the new term is

significantly smaller.



www.manaraa.com

92

oddfsts xs = run (
matCons xs (\x ys -> matPair x (\a b ->

matCons ys (\y zs -> Just (a : oddfsts zs))))
+++
matCons xs (\x ys -> matPair x (\a b -> matNil ys (Just [a])))
+++
matNil xs (Just []) )

Figure 3.10: A function compiled using the continuation-based match combinators

3.5 IMPLEMENTATION

The implementation of the Fixrec package consists of two main parts. First, an

Isabelle theory file contains various supporting definitions and lemmas, including

the pattern match type with its associated operations (§3.5.1) and match combina-

tors for the basic HOLCF types (§3.5.2). The remainder of Fixrec is implemented

as ML code, which performs pattern match compilation (§3.5.3), generates fixed

point definitions (§3.5.4), and proves equations (§3.5.5). Some parts of the imple-

mentation have specific features for handling mutual recursion (§3.5.6).

3.5.1 Pattern match type

The Fixrec theory defines a type ’a match to model the Haskell Maybe monad.

Normally, the Domain package would be the natural way to define such a datatype

in HOLCF:

domain ’a match = fail | succeed (lazy ’a)

However, due to the bootstrapping order of HOLCF, the Domain package is not

available at this point. Instead, we use the Cpodef package (§2.3) to define

type ’a match as an isomorphic copy of one ⊕ ’a⊥. Next, the constructors for type

’a match are defined manually, in the same manner as they would have been defined

by the Domain package (see Fig. 3.11).



www.manaraa.com

93

pcpodef ’a match = "UNIV :: (one ⊕ ’a⊥) set"

definition fail :: "’a match"
where "fail = Abs match (sinl·ONE)"

definition succeed :: "’a → ’a match"
where "succeed = (Λ x. Abs match (sinr·(up·x)))"

definition run :: "’a match → ’a::pcpo"
where "run = (Λ m. sscase·⊥·(fup·ID)·(Rep match m))"

definition mplus :: "’a match → ’a match → ’a match"
where "mplus = (Λ m1 m2. sscase·(Λ x. m2)·(Λ x. m1)·(Rep match m1))"

Figure 3.11: Definitions of pattern match type and associated functions

The run and mplus functions are defined using sscase and fup, the case combi-

nators for the strict sum and lifted cpo types (§2.4). The essential properties of

these functions are that they satisfy the rewrite rules below.2

lemma run simps [simp]:
shows "run·⊥ = ⊥" and "run·fail = ⊥" and "run·(succeed·x) = x"

lemma mplus simps [simp]:
shows "mplus·⊥·m = ⊥" and "mplus·fail·m = m"
and "mplus·(succeed·x)·m = succeed·x"

3.5.2 Table of pattern match combinators

Using Isabelle’s theory data mechanism [WW07], Fixrec maintains a table that

maps each constructor function to the name of its corresponding pattern match

combinator. Each pattern match combinator must have a specific two-argument

function type, based on the type of its constructor. The first argument has the

2A possible alternative design would be to define ’a match = "’a → ’a", fail = ID,
succeed·x = (Λ a. x), run·m = m·⊥, and mplus·m1·m2 = (Λ a. m1·(m2·a)), because these oper-
ations satisfy the same rules.



www.manaraa.com

94

result type of the constructor function. The second argument of the combinator is a

continuation function, taking a list of the constructor’s arguments and returning a

match type. For example, a constructor LCons :: ’a → ’a llist → ’a llist might have

a combinator match LCons :: ’a llist → (’a → ’a llist → ’b match) → ’b match.

Constructors with HOL function types are also allowed. The Isabelle/HOL con-

structor Pair, which has type ’a ⇒ ’b ⇒ ’a × ’b, has a corresponding match combi-

nator match Pair :: ’a × ’b → (’a → ’b → ’c match) → ’c match. Fixrec expects

match combinators to use the continuous function space (→) throughout, regard-

less of which function type (⇒ vs. →) the constructor uses. It might be beneficial

to lift this restriction, because the current system does not support constructors

like Def :: ’a ⇒ ’a lift, which have argument types that are not cpos. However,

doing so would require modifications to both the combinator table and the pattern

match compiler, and has not been implemented.

In its initial configuration, the combinator table includes entries for all the

constructors of the basic types used in HOLCF: pairs (Pair and spair), strict sum

(sinl and sinr), lifting (up), and flat unit and boolean types (ONE, TT and FF).

The match combinators for these are defined manually, as shown in Fig. 3.12. The

rules shown in Fig. 3.13 are declared as default simplification rules. The Domain

package also generates match combinators for each new datatype, and adds them

to the table (see Chapter 4).

3.5.3 Pattern match compilation

This next few subsections will use an example function definition to demonstrate

the inner workings of the Fixrec package.

domain ’a llist = LNil | LCons (lazy ’a) (lazy "’a llist")

fixrec firsts :: "(’a × ’b) llist → ’a llist"
where "firsts·LNil = LNil" | "firsts·(LCons·(x, y)·xs) = LCons·x·(firsts·xs)"



www.manaraa.com

95

definition match Pair :: "’a × ’b → (’a → ’b → ’c match) → ’c match"
where "match Pair = (Λ x k. csplit·k·x)"

definition match spair :: "’a ⊗ ’b → (’a → ’b → ’c match) → ’c match"
where "match spair = (Λ x k. ssplit·k·x)"

definition match sinl :: "’a ⊕ ’b → (’a → ’c match) → ’c match"
where "match sinl = (Λ x k. sscase·k·(Λ b. fail)·x)"

definition match sinr :: "’a ⊕ ’b → (’b → ’c match) → ’c match"
where "match sinr = (Λ x k. sscase·(Λ a. fail)·k·x)"

definition match up :: "’a⊥ → (’a → ’c match) → ’c match"
where "match up = (Λ x k. fup·k·x)"

definition match ONE :: "one → ’c match → ’c match"
where "match ONE = (Λ ONE k. k)"

definition match TT :: "tr → ’c match → ’c match"
where "match TT = (Λ x k. If x then k else fail)"

definition match FF :: "tr → ’c match → ’c match"
where "match FF = (Λ x k. If x then fail else k)"

Figure 3.12: Definitions of pattern match combinators for basic HOLCF types



www.manaraa.com

96

lemma match Pair simps [simp]:
"match Pair·(x, y)·k = k·x·y"

lemma match spair simps [simp]:
"match spair·⊥·k = ⊥"
"Jx 6= ⊥; y 6= ⊥K

=⇒ match spair·(:x, y:)·k = k·x·y"

lemma match sinl simps [simp]:
"match sinl·⊥·k = ⊥"
"x 6= ⊥ =⇒ match sinl·(sinl·x)·k = k·x"
"y 6= ⊥ =⇒ match sinl·(sinr·y)·k = fail"

lemma match sinr simps [simp]:
"match sinr·⊥·k = ⊥"
"x 6= ⊥ =⇒ match sinr·(sinl·x)·k = fail"
"y 6= ⊥ =⇒ match sinr·(sinr·y)·k = k·y"

lemma match up simps [simp]:
"match up·⊥·k = ⊥"
"match up·(up·x)·k = k·x"

lemma match ONE simps [simp]:
"match ONE·⊥·k = ⊥"
"match ONE·ONE·k = k"

lemma match TT simps [simp]:
"match TT·⊥·k = ⊥"
"match TT·TT·k = k"
"match TT·FF·k = fail"

lemma match FF simps [simp]:
"match FF·⊥·k = ⊥"
"match FF·FF·k = k"
"match FF·TT·k = fail"

Figure 3.13: Simplification rules for pattern match combinators



www.manaraa.com

97

The first step that Fixrec needs to do is pattern match compilation. As input,

the pattern match compiler gets the list of equations provided by the user; on

the left-hand side of each equation is the function being defined, applied to some

number of patterns. The output of the pattern match compiler will be a single

equation with no patterns.

Each equation is compiled separately to a function that returns a match result.

So for our example function firsts :: (’a × ’b) llist → ’a llist, each equation will be

compiled to a function of type (’a × ’b) llist → ’a llist match.

To compile a single equation, the pattern match compiler traverses the patterns

in a bottom-up, right-to-left manner, using an accumulating parameter to incre-

mentally build up the result. We will examine the steps taken while compiling the

second pattern match equation:

firsts·(LCons·(x, y)·xs) = LCons·x·(firsts·xs)

The accumulating parameter is initially just succeed applied to the right-hand side:

succeed·(LCons·x·(firsts·xs))

Going bottom-up and right-to-left, the first pattern to process is a variable pattern,

xs. For variable patterns, the accumulating parameter does not change; the algo-

rithm simply notes the name of the variable and continues to the next sub-pattern.

The variable sub-patterns y and x are handled next.

Now the algorithm moves up to the constructor pattern, (x, y). For a construc-

tor pattern, we perform the following steps:

1. Choose a fresh variable name (v) for the pattern

2. Look up the constructor (Pair) in the table to get the combinator (match Pair)

3. Abstract over the variables from the sub-patterns (x and y) to construct a

continuation

4. Apply the combinator to the fresh variable and the continuation



www.manaraa.com

98

After processing the constructor pattern (x, y), the accumulating parameter now

has this value:

match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs)))

The LCons constructor pattern is then processed similarly; it uses the fresh variable

name a, resulting in the following term.

match LCons·a·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs))))

At this point, if there were any other function arguments, we would process each of

them in sequence from right to left. The final result of compiling a single equation

then consists of the compiled pattern, together with the list of variable names from

the top-level patterns. In this case, there is only one such variable (a) because the

function firsts only takes one argument. The result of compiling the first equation

is shown below; it also has just one top-level variable (a).

match LNil·a·(succeed·LNil)

After all the equations have been processed, the final step is to combine all the

compiled patterns using the mplus and run operators, and abstract over the list

of variables from the top-level patterns. In preparation for this step, it may be

necessary to do a variable name substitution, to ensure that each equation uses

the same variable names. Below is the final combined result of compiling both

equations.

firsts = (Λ a. run·(match LNil·a·(succeed·LNil) +++
match LCons·a·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs))))))

3.5.4 Fixed point definition and continuity proof

After pattern match compilation, the next step is to create a functional by ab-

stracting the right-hand side over all occurrences of the constant being defined.

Fixrec defines the constant as the least fixed point of this functional.



www.manaraa.com

99

definition firsts def:
"firsts ≡ fix·(Λ f a. run·(match LNil·a·(succeed·LNil) +++
match LCons·a·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(f·xs))))))"

To ensure that the least fixed point exists, and that firsts is indeed a least fixed

point, it is necessary for Fixrec to prove that the functional is continuous. Inter-

nally, Fixrec creates a goal state and attempts to prove the following continuity

lemma.

have firsts.cont:
"cont (λ f. Λ a. run·(match LNil·a·(succeed·LNil) +++
match LCons·a·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(f·xs))))))"

The proof proceeds by applying the tactic intro cont2cont (see Sec. 2.5). If that

tactic fails to completely solve the goal, then we back up and try the Isabelle

simplifier instead. If neither tactic can solve the goal, then Fixrec aborts with

an error message. In our example, the functional uses only continuous application

and abstraction, so the rules in cont2cont are sufficient to complete the proof.

Fixrec uses the theorems firsts def and firsts.cont to derive a couple of other

theorems. The first is the unfold rule, which states that firsts is indeed a fixed point

of the appropriate functional. The theorem firsts.unfold is produced by resolving

firsts def and firsts.cont with the library lemma def cont fix eq. Recall that (Λ x. e)

is syntactic sugar for Abs cfun (λ x. e), which explains the presence of Abs cfun in

the lemma.

lemma def cont fix eq:
"Jf ≡ fix·(Abs cfun F); cont FK =⇒ f = F f"

theorem firsts.unfold:
"firsts = (Λ a. run·(match LNil·a·(succeed·LNil) +++
match LCons·a·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs))))))"

The next derived theorem is the induction rule, which basically states that firsts

is the least fixed point of its functional. Like firsts.unfold, theorem firsts.induct is

also derived from firsts def and firsts.cont, but now using lemma def cont fix ind.



www.manaraa.com

100

lemma def cont fix ind:
"Jf ≡ fix·(Abs cfun F); cont F; adm P; P ⊥; ∧x. P x =⇒ P (F x)K =⇒ P f"

theorem firsts.induct:
"Jadm P; P ⊥;
(∧x. P x =⇒ P (Λ a. run·(match LNil·a·(succeed·LNil) +++
match LCons·a·(Λ v xs. match Pair·v·(Λ x’ y. succeed·(LCons·x’·(x·xs)))))))K

=⇒ P firsts"

Note that the pattern matching combinators appear explicitly in the induction

rule. Perhaps it would be preferable to hide such implementation details from

users, but it is unclear how best to accomplish this. A possibility would be to

have Fixrec define the functional as a named constant, which would make the

induction rules more concise. But in proofs by induction users would have to unfold

the functional’s definition, exposing them once more to the matching combinators.

Further directions for improvement will be discussed in this chapter’s conclusion.

3.5.5 Proving pattern match equations

This section will show how Fixrec uses unfold rules and the simplifier to prove

the original defining equations as theorems. Fixrec sets up a goal state for each

defining equation, and tries to prove each one in turn. We will examine the proof

of the second equation, as it is more interesting.

theorem "firsts·(LCons·(x, y)·xs) = LCons·x·(firsts·xs)"

The first step in the proof is to substitute the unfold lemma firsts.unfold on the

left-hand side only. This leaves the following goal state:

goal (1 subgoal):
1. (Λ a. run·(match LNil·a·(succeed·LNil) +++ match LCons·a·(Λ v xs.
match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs))))))·(LCons·(x, y)·xs)

= LCons·x·(firsts·xs)

The next step is to apply the simplifier (apply simp). If the simplifier is not able

to prove the goal, then Fixrec will abort with an error message. In this example,



www.manaraa.com

101

the simplifier will be able to solve the goal, assuming that the following lemmas

about the match combinators have been added to the simplifier:

"match LNil·⊥·k = ⊥"
"match LNil·LNil·k = k"
"match LNil·(LCons·x·xs)·k = fail"

"match LCons·⊥·k = ⊥"
"match LCons·LNil·k = fail"
"match LCons·(LCons·x·xs)·k = k·x·xs"

We will examine the actions of the simplifier to illustrate how these simp rules

are used. The first thing the simplifier does is beta-reduction, leaving the subgoal

below.

goal (1 subgoal):
1. run·(match LNil·(LCons·(x, y)·xs)·(succeed·LNil) +++ match LCons·
(LCons·(x, y)·xs)·(Λ v xs. match Pair·v·(Λ x y. succeed·(LCons·x·(firsts·xs)))))

= LCons·x·(firsts·xs)

Here the simp rules for match LNil and match LCons with match LCons are appli-

cable, so we rewrite the goal accordingly and then beta-reduce again:

goal (1 subgoal):
1. run·(fail +++ match Pair·(x, y)·(Λ x y. succeed·(LCons·x·(firsts·xs))))
= LCons·x·(firsts·xs)

Now the simplifier can use the rule for match Pair applied to a pair constructor.

After rewriting and beta-reducing again, we have the following.

goal (1 subgoal):
1. run·(fail +++ succeed·(LCons·x·(firsts·xs))) = LCons·x·(firsts·xs)

At this point, the rewrite rules for run and mplus given in Fig. 3.11 are sufficient

to solve the goal. All equations in the original specification to Fixrec are proved

in a similar manner: Unfold once on the left-hand side, and then simplify. When

all of the equations have been proved, the list of theorems is bound to the name

firsts.simps; Fixrec also adds all of them to the simplifier.

The fixrec simp method performs the same proof steps that Fixrec uses inter-

nally to prove equations: Substitute the appropriate unfold rule, and then apply



www.manaraa.com

102

the simplifier. The implementation contains some extra machinery to help it find

the appropriate unfold rule to use. Using the theory data mechanism [WW07],

Fixrec maintains a table that maps from names of constants to their unfold

rules. The fixrec simp method examines the current subgoal to find the name of

the leading constant on the left-hand side of the equation, and then looks up the

unfold rule from the table.

3.5.6 Mutual recursion

Fixrec can define two or more values at once, where the definition of each one

may refer to any of the others—this situation is called mutual recursion. We will

use an example definition of three mutually recursive infinite lists to show how

Fixrec handles this internally.

fixrec listA :: "tr llist" and listB :: "tr llist" and listC :: "tr llist"
where "listA = LCons·TT·listB"
| "listB = LCons·FF·listC"
| "listC = LCons·FF·listA"

In order to keep the focus on the mutual recursion, this example purposefully does

not use pattern matching. (Pattern-match compilation works no differently in the

mutually recursive case.)

Fixrec starts to treat mutual recursion specially when it creates the functional

to use with the fixed point combinator. In the single-definition case, the pattern

match compiler produces a single equation of the form constant = rhs; the right-

hand side is then abstracted over all occurrences of the constant. With mutual

recursion we now have a list of equations, each with a different constant on the

left-hand side. Fixrec combines all of the right-hand sides into a tuple, and then

abstracts over a tuple of all the constants at once. (A lambda abstraction with

a tuple pattern is represented in Isabelle with possibly-nested applications of the

constant prod case :: (’a ⇒ ’b ⇒ ’c) ⇒ ’a × ’b ⇒ ’c.) The result is a functional



www.manaraa.com

103

that maps from tuples to tuples. Fixrec attempts to prove that this functional is

continuous, using the tactics described above in Sec. 3.5.4. (Note that cont2cont

includes continuity lemmas for both prod case and Pair.)

have listA listB listC.cont:
"cont (λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a))"

The least fixed point of this functional is a tuple. Each of the new constants is

defined by projecting (using fst and snd) the appropriate component of the tuple.

definition listA def:
"listA ≡ fst
(fix·(Abs cfun (λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a))))"

definition listB def:
"listB ≡ fst (snd
(fix·(Abs cfun (λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a)))))"

definition listC def:
"listC ≡ snd (snd
(fix·(Abs cfun (λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a)))))"

Now we need to use these definitions together with the continuity lemma to gen-

erate unfolding rules and an induction rules. We will consider the unfolding rules

first. In the single-definition case, we used the library lemma def cont fix eq to

generate the unfolding rule.

lemma def cont fix eq:
"Jf ≡ fix·(Abs cfun F); cont FK =⇒ f = F f"

Unfortunately, none of the constant definitions have the right form to work with

this rule. To remedy this, Fixrec uses another library lemma to combine all of

the individual constant definitions into a new theorem that has the right form.

lemma Pair equalI: "Jx ≡ fst p; y ≡ snd pK =⇒ (x, y) ≡ p"

have listA listB listC def:
"(listA, listB, listC) ≡
fix·(Abs cfun (λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a)))"



www.manaraa.com

104

Now def cont fix eq can be resolved with listA listB listC def and listA listB listC.cont

to produce the following rule:

have listA listB listC.unfold raw:
"(listA, listB, listC) =
(λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a)) (listA, listB, listC)"

After rewriting to reduce the applications of prod case, we get the combined un-

folding rule:

have listA listB listC.unfold:
"(listA, listB, listC) = (LCons·TT·listB, LCons·FF·listC, LCons·FF·listA)"

One step remains to produce the individual unfold rules for each constant. Fixrec

uses two more library lemmas to go from equalities between tuples to equalities

between their components:

lemma Pair eqD1: "(a, b) = (c, d) =⇒ a = c"

lemma Pair eqD2: "(a, b) = (c, d) =⇒ b = d"

theorem listA.unfold: "listA = LCons·TT·listB"

theorem listB.unfold: "listB = LCons·FF·listC"

theorem listC.unfold: "listC = LCons·FF·listA"

This takes care of the unfolding rules. Fixrec goes on to use these for proving

the defining equations, as described above in Sec. 3.5.5 (a trivial process in this

particular example, because it does not use any pattern matching).

Now we will consider the induction rule that Fixrec produces for mutually

recursive definitions. In the single-definition case, simply resolving def cont fix ind

with the fixed point definition and continuity lemma yields a suitable induction

rule. With mutually recursive definitions, however, getting a usable induction rule

will take some more work. When def cont fix ind is resolved with listA listB listC def

and listA listB listC.cont, we get the following rule:



www.manaraa.com

105

have listA listB listC.induct raw:
"Jadm P; P ⊥;∧x. P x =⇒ P ((λ(a, b, c). (LCons·TT·b, LCons·FF·c, LCons·FF·a)) x)K

=⇒ P (listA, listB, listC)"

The serious problem with this rule is in the form of the conclusion. In prac-

tice, mutual induction is often used with conjunctions of propositions, such as

Q(listA) ∧ R(listB) ∧ S(listC) (where Q, R, and S are placeholders for arbitrary

predicates). But the raw induct rule above, with its conclusion P (listA, listB, listC),

does not match goals of this form!

To remedy this problem, Fixrec instantiates the predicate P in the raw in-

duction rule with a predicate that uses prod case. In our example, P would be

instantiated to (λ(a, b, c). P a b c). After rewriting to simplify applications of

prod case to pairs or ⊥, and to split universal quantifiers over product types, we

get the final mutual induction rule below.

theorem listA listB listC.induct:
"Jadm (λ(a, b, c). P a b c); P ⊥ ⊥ ⊥;∧a b c. P a b c =⇒ P (LCons·TT·b) (LCons·FF·c) (LCons·FF·a)K

=⇒ P listA listB listC"

3.6 DISCUSSION

The current implementation of Fixrec improves on the original version by Amber

Telfer [Tel04] in various ways. Internal changes to pattern match compilation

have already been discussed in Sec. 3.4. In terms of user-visible features, the

original package supported a subset of definitions allowed by the current package:

Only one function could be defined at a time (no mutual recursion), and functions

were required to have exactly one argument (which could be a tuple). Strict

constructor functions (whose match functions have conditional rewrite rules) were

not supported. Figure 3.14 summarizes the main differences between the two

versions of Fixrec.



www.manaraa.com

106

Original Current

Number of function arguments exactly 1 0 or more

Mutual recursion No Yes

HOL constructors like Pair No Yes

Patterns with strict constructors No with x 6= ⊥

Overlapping patterns No with (unchecked)

Proving extra equations fixpat fixrec simp

Figure 3.14: Differences between original (2004) and new versions of Fixrec

Another difference between the old and new versions of Fixrec is the method

for proving additional equations. The original Fixrec package provided a top-level

command called fixpat, which would be given a list of function patterns. For each

pattern, the tool would unfold the function definition once and simplify; the result

of the simplification would become the right-hand-side of the generated theorem. In

contrast, the new fixrec simp method requires users to specify a complete equation.

Using fixrec simp is thus a bit more verbose than fixpat, but it has the advantage of

being more predictable (because the produced theorems are stated explicitly). It

also enables users to prove less trivial equations, because they can be stated with

side conditions (like x 6= ⊥), and fixrec simp can be combined with other proof

methods such as case analysis on other variables.

The other definition package most closely related to Fixrec is the partial

function package for Isabelle/HOL implemented by Krauss [Kra10b] (still in de-

velopment at time of writing). This tool will use the same approach to pattern

match compilation as the Function package, but instead of well-founded recur-

sion, it uses a domain-theoretic least fixed point combinator to define recursive

functions. Instead of a pcpo type class, it uses of a collection of explicit ordering

relations for various supported types, each of which is proved to be a complete



www.manaraa.com

107

partial order. For example, a flat ordering is defined for the ’a option type, where

None is considered to be below Some x for all x. A similar ordering is provided for

an exception monad, where one of the exception values is considered as the bottom

element.

Future work. The Fixrec package has several limitations that could be ad-

dressed in future work. One such limitation has to do with definedness side condi-

tions: Sometimes Fixrec requires side conditions when it seems they should not

be necessary. For example, due to the conditional simplification rule for match sinl

(Fig. 3.13), the following definition currently requires the side condition x 6= ⊥.

fixrec from sinl :: "’a ⊕ ’b → ’a"
where "x 6= ⊥ =⇒ from sinl·(sinl·x) = x"

However, the function from sinl actually satisfies the equation from sinl·(sinl·x) = x

unconditionally, which can be proven by case analysis on whether or not x = ⊥.

It would be preferable if Fixrec could perform this case analysis automatically,

so that users could write this definition without the side condition. One way to

accomplish this would be to replace the rewrite rule for match sinl in Fig. 3.13 with

the following rule:

lemma match sinl sinl [simp]:
"match sinl·(sinl·x)·k = (if x = ⊥ then ⊥ else k·x)"

The simplifier would then automatically perform a case split on the if-then-else.

Such rules would be trivial to prove for sinl, sinr, and spair. However, generat-

ing similar rules for constructors defined by the Domain package would require

rewriting ML code, and has not been implemented.

Another problem, mentioned already in Sec. 3.5.4, is that the result of pattern

match compilation is visible to users as part of the induction rules. It would be

preferable to hide such implementation details from the users. As stated before,

merely defining the functional as a constant would not be sufficient if users had to



www.manaraa.com

108

unfold its definition to prove anything about it. A more useful solution would be

for Fixrec to generate equations for the functional based on the ones provided

for the original function. For example, when defining the function firsts, Fixrec

could generate a constant firsts functional with the following theorems:

fixrec firsts :: "(’a × ’b) llist → ’a llist"
where firsts LNil: "firsts·LNil = LNil"
| firsts LCons: "firsts·(LCons·(x, y)·xs) = LCons·x·(firsts·xs)"

theorem firsts functional.simps:
"firsts functional r·LNil = LNil"
"firsts functional r·(LCons·(x, y)·xs) = LCons·x·(r·xs)"

An alternative approach would be to define a nice output syntax for nested case

expressions in HOLCF, and use it for compiled patterns; then there would be no

pressing need to hide it from users. But this is also a challenge to design, because

it would need to work smoothly with simplification. It is desirable to be able to

partially simplify a nested case expression, and partially-simplified case expressions

must also be pretty-printed in a presentable fashion.

Even with its limitations, the Fixrec package is already quite useful in prac-

tice. In Chapter 7 we present some case studies using Fixrec to formalize various

Haskell library functions. In another previously published case study, the present

author used Fixrec and fixed point induction to verify a substantial real-world

Haskell library [Huf09b].



www.manaraa.com

109

Chapter 4

RECURSIVE DATATYPE DEFINITIONS: THE DOMAIN PACKAGE

4.1 INTRODUCTION

Datatype definitions are a standard feature of many functional programming lan-

guages. A datatype definition is a way for a user to specify a new type, by explicitly

enumerating all the ways that values of that type may be constructed. A datatype

definition, then, consists of a list of constructors, each of which may take zero or

more arguments of specified types.

For example, in Haskell we might define a datatype OptInts, consisting of

optional pairs of integers; values of type OptInts include None, as well as pairs

like Pair 3 5. (And because we can write non-terminating expressions in Haskell,

type OptInts actually includes the special value ⊥ as well.)

data OptInts = None | Pair Int Int

Datatypes may also be recursive, where the type being defined appears on the

right-hand side of the definition. Below is an example of a binary tree datatype,

where the Branch constructor takes two other subtrees as arguments. Values of

type BinTree include Tip, Branch Tip Tip, and Branch Tip (Branch Tip Tip);

Branch constructors may be nested to any depth.

data BinTree = Tip | Branch BinTree BinTree

Datatypes can also have type parameters, such as this type of lists where the ele-

ment type is specified by the parameter a. Values include Cons 3 (Cons 5 Nil),

which has type List Int.



www.manaraa.com

110

data List a = Nil | Cons a (List a)

Isabelle/HOL Datatype package. The Datatype package implements these

kinds of recursive datatype definitions for Isabelle/HOL. It provides an input syn-

tax that looks very much like the Haskell definitions.

datatype opt ints = None | Pair "int" "int"

datatype bintree = Tip | Branch "bintree" "bintree"

datatype ’a list = Nil | Cons "’a" "’a list"

However, unlike Haskell, the Datatype package lives and works in a world of in-

ductive data and total functions. Types defined by the Datatype package include

precisely those values that can be built up using finite combinations of constructor

functions; nothing more, nothing less. In particular, they do not include ⊥, or any

infinite values.

Isabelle/HOLCF Domain package. The Domain package provides a similar

datatype facility for HOLCF, in a world of cpos, bottoms, infinite values, and

continuous functions. Like the Datatype package, it also supports a syntax that

looks very much like Haskell:

domain opt ints = None | Pair "int lift" "int lift"

domain bintree = Tip | Branch "bintree" "bintree"

domain ’a list = Nil | Cons "’a" "’a list"

But unlike the Datatype package, the Domain package produces types that are

pointed cpos: The constructors are continuous functions, and ⊥ is an element of

every datatype. Types defined by the Domain package may or may not include

partial and infinite values, depending on whether the user decides to make the

datatype lazy. (Laziness is the default for datatypes in Haskell, but not for strict

functional languages like ML.) For example, the lazy version of bintree shown



www.manaraa.com

111

below includes both finite and infinite values, including an infinite value consisting

of nothing but Branch constructors all the way down.

domain bintree = Tip | Branch (lazy "bintree") (lazy "bintree")

The HOLCF Domain package was originally created by David von Oheimb in

1997 [Ohe97], after which it became an integral part of HOLCF ’99 [MNOS99].

Since the initial version, the code has undergone a fairly significant amount of

modification and improvement by the present author. The main purpose of this

chapter is to document the current state of the implementation, and explain the

ideas behind all the new code that was not present in the original.

The original Domain package relied on a rather dubious implementation tech-

nique: Instead of following the definitional approach, and actually constructing

recursive datatypes, it relied on axioms to help define new datatypes. Specifically,

each new datatype required three new axioms to be declared; further definitions

and proofs were then based on these. In all the years since HOLCF ’99, the Do-

main package has continued to use axioms to support its definitions, although

many of the intervening changes to the code have been motivated by the goal of

eliminating the reliance on axioms.

At last, in HOLCF ’11 the Domain package now has two instantiations—an

axiomatic mode (kept for backward compatibility) and a new definitional mode.

This chapter describes the operation of the axiomatic version. However, only

a small fraction of the code is specific to the axiomatic mode, so most of this

chapter is equally applicable to both versions. Relative to the axiomatic mode,

the definitional mode requires a significant amount of extra theoretical machinery

to implement, which will be built up in the course of Chapters 5 and 6.

Contributions. Much of the material presented in this chapter is just a rework-

ing of von Oheimb’s original Domain package implementation [Ohe97]. Since the

HOLCF ’99 version, many of the present author’s improvements to the package



www.manaraa.com

112

have been incremental. However there are a few new features that stand out:

• New modular code organization, to isolate the axiom-generating components

• Efficient method for proving exhaustiveness of constructors, using rewriting

• Notion of decisive take functions for recognizing finite-valued domains

• Support for indirect-recursive domain definitions

• Integration with the Fixrec package

• Numerous speed-ups, making large datatype definitions feasible

Overview. The remainder of this chapter consists of two main parts. First, we

describe the Domain package from a user’s point of view, explaining the various

kinds of domain specifications it is possible to write, and the relevant constants

and theorems the package generates (§4.2). Next we cover the implementation of

the Domain package, showing how it is organized into modules, and how each

module works (§4.3). The chapter concludes with a short summary and discussion

of the problems caused by axioms, and previews the eventual solution to these

problems (§4.4).

4.2 DOMAIN PACKAGE FEATURES

4.2.1 Strict and lazy constructors

The Domain package has an input syntax similar to the Isabelle/HOL Datatype

package [NPW02]. The right-hand side of a domain definition consists of one or

more constructors, each with zero or more argument types.

domain ’a strictlist = nil | cons "’a" "’a strictlist"

Each domain definition produces constructors with continuous function types.

For example, defining ’a strictlist as shown yields the function cons with type

’a → ’a strictlist → ’a strictlist. Constructor functions are strict by default, so



www.manaraa.com

113

cons·⊥·s = ⊥ and cons·a·⊥ = ⊥. Constructors can be made non-strict in spec-

ified arguments using the lazy keyword.

domain ’a stream = SNil | SCons "’a" (lazy "’a stream")

Note that making the recursive argument lazy causes type ’a stream to include

infinite values, in constrast with ’a strictlist, whose values are all finite.

The Domain package also generates a collection of rewrite rules about the

constructors, which are added to the simplifier.

"SCons·⊥·s = ⊥"
"SNil 6= ⊥"
"SCons·a·s = ⊥ ←→ a = ⊥"
"a 6= ⊥ =⇒ SCons·a·s v SCons·a’·s’ ←→ a v a’ ∧ s v s’"
"a 6= ⊥ =⇒ SCons·a·s = SCons·a’·s’ ←→ a = a’ ∧ s = s’"
"SNil 6v SCons·a’·s’"
"SCons·a·s v SNil ←→ a = ⊥"
"SNil 6= SCons·a’·s’"
"SCons·a·s 6= SNil"
"compact SNil"
"Jcompact a; compact sK =⇒ compact (SCons·a·s)"

In addition to the simplification rules, the Domain package also generates

theorems asserting that the constructors are exhaustive. The generated theorems

follow a naming scheme similar to the Isabelle/HOL Datatype package, where

each theorem is qualified by the name of the relevant type. The two logically

equivalent theorems below follow the same pattern as the similarly-named theorems

generated by Datatype, except that they also include cases for ⊥ and strict

constructor functions.

theorem stream.nchotomy:
"y = ⊥ ∨ y = SNil ∨ (∃a s. y = SCons·a·s ∧ a 6= ⊥)"

theorem stream.exhaust:
"Jy = ⊥ =⇒ P; y = SNil =⇒ P; ∧a s. Jy = SCons·a·s; a 6= ⊥K =⇒ PK =⇒ P"



www.manaraa.com

114

The Domain package registers stream.exhaust as the default case analysis rule

for type ’a stream. This means proof methods like apply (cases y) can be used on

a stream variable y, without having to explicitly name rule stream.exhaust.

4.2.2 Case expressions

The Domain package configures Isabelle’s parser to allow case expressions on each

new datatype. This case syntax is supported by case combinators. For example,

with the ’a stream domain, the case expression case x of SNil ⇒ y | SCons·a·s ⇒ z

translates to stream case·y·(Λ a s. z)·x. The case combinator stream case, which

has type ’b → (’a → ’a stream → ’b) → ’a stream → ’b, satisfies the following sim-

plification rules:

theorem stream.case rews [simp]:
"stream case·f1·f2·⊥ = ⊥"
"stream case·f1·f2·SNil = f1"
"a 6= ⊥ =⇒ stream case·f1·f2·(SCons·a·s) = f2·a·s"

4.2.3 Mixfix syntax

In Isabelle, a mixfix declaration specifies custom syntax for parsing and pretty

printing; infix syntax is a special case for functions of two arguments. The Domain

package supports mixfix declarations for data constructors. For example, we can

specify syntax for SNil and an infix operator for the SCons constructor, like this:

domain ’a stream =
SNil ("<>") | SCons "’a" (lazy "’a stream") (infixr "##" 60)

Now<> is defined as alternative syntax for SNil, and a ## s abbreviates SCons·a·s.

Mixfix declarations can also be given for the type constructors themselves. For

example:

domain (’a, ’b) either (infixl ":+:" 20) = Left (lazy "’a") | Right (lazy "’b")

This introduces the type notation ’a :+: ’b as an abbreviation for (’a, ’b) either.



www.manaraa.com

115

4.2.4 Selector functions

Each constructor argument in a domain declaration may be given an optional

selector name. For example, for our ’a stream datatype we can label the arguments

of SCons as head and tail:

domain ’a stream = SNil | SCons (head :: "’a") (lazy tail :: "’a stream")

The Domain package then defines two selector functions: head :: ’a stream → ’a

and tail :: ’a stream → ’a stream. When applied to the correct constructor, each

selector function projects out the desired argument; applied to any other construc-

tor, the selector returns ⊥. Accordingly, the package derives the following rewrite

rules, which are added to the simplifier.

theorem stream.sel rews [simp]:
"head·⊥ = ⊥"
"tail·⊥ = ⊥"
"head·SNil = ⊥"
"tail·SNil = ⊥"
"head·(SCons·a·s) = a"
"a 6= ⊥ =⇒ tail·(SCons·a·s) = s"

4.2.5 Discriminator functions

The Domain package automatically defines a discriminator function for each data

constructor. Each discriminator function returns a lifted boolean, depending on its

argument: TT if its argument is the correct constructor, FF for a different construc-

tor, and ⊥ if its argument is ⊥. For example, when defining type ’a stream, the

package generates is SNil :: ’a stream → tr and is SCons :: ’a stream → tr. These

functions satisfy the following rules, which are declared to the simplifier.

theorem stream.dis rews [simp]:
"is SNil·⊥ = ⊥"
"is SCons·⊥ = ⊥"
"is SNil·x = ⊥ ←→ x = ⊥"



www.manaraa.com

116

"is SCons·x = ⊥ ←→ x = ⊥"
"is SNil·SNil = TT"
"a 6= ⊥ =⇒ is SNil·(SCons·a·s) = FF"
"is SCons·SNil = FF"
"a 6= ⊥ =⇒ is SCons·(SCons·a·s) = TT"

4.2.6 Fixrec package support

The Domain package generates a match combinator for each data constructor,

and registers them for use with the Fixrec package. Most of the details are

irrelevant as far as users are concerned; the important thing is that after defining a

datatype with the Domain package, users can write function definitions over that

datatype using Fixrec.

4.2.7 Take functions

Each datatype defined by the Domain package gets its own take function, which

is actually a chain of functions that return finite approximations of their input

values. These take functions are a bit like the Haskell function take for lists,

in that take (Suc n) applied to a constructor maps take n over that constructor’s

recursive arguments. However, unlike the Haskell take function, take 0 is undefined

(i.e., ⊥). In this way, the HOLCF take functions are exactly like the generic approx

functions discussed by Hutton and Gibbons [HG01].

For the ’a stream datatype, the Domain package defines a function stream take

whose type is nat ⇒ ’a stream → ’a stream. The defining equations below are

added as default simplification rules.

"stream take 0 = ⊥"
"stream take n·⊥ = ⊥"
"stream take (Suc n)·SNil = SNil"
"stream take (Suc n)·(SCons·a·s) = SCons·a·(stream take n·s)"



www.manaraa.com

117

The package also derives a few more theorems from the definition of stream take,

which can also be useful for simplification:

theorem stream.chain take [simp]: "chain (λn. stream take n)"

theorem stream.take below: "stream take n·x v x"

theorem stream.take take:
"stream take m·(stream take n·x) = stream take (min m n)·x"

In practice, take functions are usually used for low-level induction proofs. The

Domain package generates a reach axiom (in two equivalent forms) stating that

the least upper bound of the chain of take functions is the identity. The principle

of take induction (rule stream.take induct) is a direct corollary of the reach axiom.

theorem stream.lub take: "(⊔n. stream take n) = ID"

theorem stream.reach: "(⊔n. stream take n·x) = x"

theorem stream.take induct: "Jadm P; ∧n. P (stream take n·x)K =⇒ P x"

The take lemma is another reasoning principle derived from the reach axiom.

This lets users show that two (possibly infinite) values are equal, by showing that

the finite values returned by the take functions are equal.

theorem stream.take lemma:
"(∧n. stream take n·x = stream take n·y) =⇒ x = y"

A variation of the take lemma, specific to lazy lists, was originally popularized by

Bird and Wadler [BW88]. The take lemma generated by the Domain package is

actually identical to the generic “approximation lemma” described by Hutton and

Gibbons [HG01]. An example of a proof using the take lemma can be found in the

case study in Chapter 7.

4.2.8 Induction rules

In addition to the low-level take induction rules, the Domain package also gener-

ates some high-level induction principles in terms of the constructor functions.



www.manaraa.com

118

theorem stream.finite induct:
"JP ⊥; P SNil; ∧a s. Ja 6= ⊥; P sK =⇒ P (SCons·a·s)K

=⇒ P (stream take n·x)"

To be able to conclude that a property holds for all streams, including infinite

ones, the full induction rule adds an admissibility requirement.

theorem stream.induct:
"Jadm P; P ⊥; P SNil; ∧a s. Ja 6= ⊥; P sK =⇒ P (SCons·a·s)K =⇒ P x"

For mutually recursive domain definitions, the Domain package generates a mu-

tual induction rule for proving properties of both types simultaneously.

domain ’a list1 = Nil1 | List2 (lazy "’a list2")
and ’a list2 = Cons2 (lazy "’a") (lazy "’a list1")

theorem list1 list2.induct:
"Jadm P1; adm P2; P1 ⊥; P1 Nil1; ∧list2. P2 list2 =⇒ P1 (List2·list2);
P2 ⊥; ∧a list1. P1 list1 =⇒ P2 (Cons2·a·list1)K =⇒ P1 x1 ∧ P2 x2"

The Domain package declares the high-level induction rules as the default in-

duction rules for their types. This means that, for example, the proof method

apply (induct s) will use rule stream.induct if s is a variable of type ’a stream. Like-

wise, the simultaneous induction method apply (induct x and y) will automatically

use rule list1 list2.induct if x and y have the appropriate types.

4.2.9 Finite-valued domains

Some datatypes, like ’a strictlist below, contain only finite values because recursion

only occurs via strict constructor arguments. For such datatypes, the Domain

package can generate induction rules without an admissibility condition. This

includes both the low-level take induction principle, and the ordinary high-level

induction rule.

domain ’a strictlist = nil | cons "’a" "’a strictlist"

theorem strictlist.take induct: "(∧n. P (strictlist take n·x)) =⇒ P x"



www.manaraa.com

119

theorem strictlist.induct:
"JP ⊥; P nil; ∧a s. Ja 6= ⊥; s 6= ⊥; P sK =⇒ P (cons·a·s)K =⇒ P x"

The Domain package can also recognize finite-valued domains in mutually recur-

sive definitions.

4.2.10 Coinduction

The Domain package implements the principle of coinduction for recursive do-

mains, following the design described by Pitts [Pit94]. The main concept underly-

ing coinduction is the bisimulation relation: A binary relation R is a bisimulation if

any two values related by R are either both⊥, or else they are the same constructor,

with their arguments again related by R.

definition stream bisim :: "(’a stream ⇒ ’a stream ⇒ bool) ⇒ bool"
where "stream bisim R ≡ (∀x y. R x y −→
(x = ⊥ ∧ y = ⊥) ∨
(x = SNil ∧ y = SNil) ∨
(∃a s a’ s’. a = a’ ∧ R s s’ ∧ x = SCons·a·s ∧ y = SCons·a’·s’))"

The principle of coinduction states that any two values related by any bisimulation

relation must be equal.

theorem stream.coinduct: "Jstream bisim R; R x yK =⇒ x = y"

A good exposition of the proof technique of coinduction, as used for lazy lists, can

be found in Gibbons and Hutton [GH05]. The implementation of coinduction for

recursive domains has changed little since the HOLCF ’99 Domain package, and

we will not be using coinduction further in this dissertation.

4.2.11 Indirect recursion

In all the recursive domain definitions shown so far, occurrences of recursive types

have only appeared directly as constructor arguments. But it is also possible for a

recursive type to occur indirectly, under one or more other type constructors. For



www.manaraa.com

120

definition prod map :: "(’a → ’b) → (’c → ’d) → ’a × ’c → ’b × ’d"
where "prod map = (Λ f g (x, y). (f·x, g·y))"

definition sprod map :: "(’a → ’b) → (’c → ’d) → ’a ⊗ ’c → ’b ⊗ ’d"
where "sprod map = (Λ f g. (:x y:). (:f·x, g·y:)))"

definition ssum map :: "(’a → ’b) → (’c → ’d) → ’a ⊕ ’c → ’b ⊕ ’d"
where "ssum map = (Λ f g. sscase·(sinl oo f)·(sinr oo g))"

definition u map :: "(’a → ’b) → ’a u → ’b u"
where "u map = (Λ f. fup·(up oo f))"

definition cfun map :: "(’b → ’a) → (’c → ’d) → (’a → ’c) → (’b → ’d)"
where "cfun map = (Λ a b f x. b·(f·(a·x)))"

Figure 4.1: Map combinators for various HOLCF types

example, in the following definition of bintree, the argument type of the Branch

constructor contains recursive occurrences of bintree within a strict product.

domain bintree = Tip | Branch "bintree ⊗ bintree"

Unlike the HOLCF ’99 Domain package, the HOLCF ’11 version now supports

such indirect-recursive domain definitions. One user-visible consequence of indirect

recursion is that the rewrite rules for take functions mention map combinators:

"bintree take (Suc n)·(Branch·x) =
Branch·(sprod map·(bintree take n)·(bintree take n)·x)"

Here sprod map is a combinator that maps each of two functions over the respective

elements of a strict pair. There are similar map combinators for a few other

type constructors that the Domain package also knows about; these are shown in

Fig. 4.1. In Chapter 6 when we talk about the definitional Domain package, we

will see how to make this list extensible, in a sound way.

For indirect-recursive domains, the Domain package still generates take induc-

tion rules, just as it does for any other domain definition. However, currently it



www.manaraa.com

121

does not produce high-level induction or coinduction rules. Formulating high-level

induction rules for arbitrary indirect-recursive domains is still an experimental

topic; we will have more to say about this in the case study in Chapter 7.

4.3 IMPLEMENTATION

The entire implementation of the Domain package is based on pairs of functions

that form domain isomorphisms. Each isomorphism relates the new “abstract”

type, such as ’a stream, to a “representation” type built from strict sums and

products, plus lifting to model laziness. For example, consider our lazy stream

type:

domain ’a stream = SNil | SCons (head :: "’a") (lazy tail :: "’a stream")

Here ’a stream is the abstract type and one ⊕ (’a ⊗ ’a stream⊥) is the represen-

tation type. The Domain package produces continuous abs and rep functions

between these two types, which are analogous to the Abs and Rep functions pro-

duced by the Typedef package described in Chapter 2.

stream abs :: "one ⊕ (’a ⊗ ’a stream⊥) → ’a stream"

stream rep :: "’a stream → one ⊕ (’a ⊗ ’a stream⊥)"

Together with standard operations on the strict sum, strict product, and lifting

types, the abs and rep functions can be used to define all the necessary operations

on new domain types—such as constructors, case combinators, and take functions.

Most of the properties of these operations are derived from the isomorphism ax-

ioms, which assert that the abs and rep functions are each other’s inverses.

Since HOLCF ’99, the Domain package has undergone a significant reorgani-

zation to make the code more modular. The diagram in Fig. 4.2 shows the main

components, and how information is passed between them. The new organization

offers multiple benefits. For example, all code dealing with constructor functions is

now isolated in components in the bottom half of the diagram. The other modules,



www.manaraa.com

122

input
spec

isomorphism
axioms

take
functions

reach
axioms

take
induction

constructor
functions

take
rules

high-level
induction

Figure 4.2: Domain package implementation schematic

located in the top half, only need to know about domain isomorphisms, and never

see any information about constructor functions. These modules can then have

simpler interfaces, and also fewer dependencies on the other components, making

maintenance easier.

Another benefit of the new modularization is the ability to swap out individual

components. In particular, note that all code involved with generating axioms is

contained within the pair of modules inside the dashed lines in Fig. 4.2. With

clear interfaces between these axiomatic modules and the rest of the Domain

package, it will be possible to replace them with definitional versions at a later

time, with minimal modifications to the rest of the system. We will come back to

the definitional version of the Domain package in Chapter 6.

Each module in Fig. 4.2 will be explained in more detail in one of the following

sections. For each module, we will describe the definitions and proofs that are

generated, as well as the ML record types that make up the interfaces.

4.3.1 Input specification module

The input-specification module of the Domain package starts by parsing its in-

put according to the grammar shown in Fig. 4.3. The input consists of one or

more domain specifications, each of which has a type on the left-hand side, and a



www.manaraa.com

123

definition:
domain dom-spec

and

dom-spec:
tyargs name = con-spec

mixfix |

tyargs:

tyarg

( tyarg )

,

tyarg:
tid

:: sort

con-spec:
name

arg-spec mixfix

arg-spec:
( name :: typ )

lazy

( lazy typ )

typ

Figure 4.3: Input syntax for Domain package



www.manaraa.com

124

list of constructor specifications on the right. Each constructor has zero or more

arguments, either lazy or strict, with an optional selector name for each.

After parsing, the module performs some simple checks, like making sure that

there are no duplicate type or constructor names. There are also some more

semantic checks: For example, the type of every strict constructor argument must

be in class pcpo. (Class cpo is sufficient for lazy arguments that do not have

a selector function.) Another test ensures that recursive occurrences of types are

used with the same type arguments. Indirect recursion is also checked for, ensuring

that it is only used with acceptable type constructors, including strict sums and

products, lifting, and continuous function space. (Recursion under the full function

space type constructor is specifically not allowed, because it can lead to unsound

isomorphism axioms.)

After performing these basic checks on the input, the main task of this module is

to prepare information to be passed into the next modules. The input specification

module passes information to two others: the isomorphism axioms module and the

constructor functions module.

For the isomorphism axioms module, the input specification is transformed into

a list of domain equations, one for each new type; information about construc-

tors and selectors is discarded. For example, when defining domain ’a stream =

SNil | SCons "’a" (lazy "’a stream"), the isomorphism module will only see the do-

main equation ’a stream ∼= one ⊕ (’a ⊗ ’a stream⊥). Mutually recursive domain

definitions yield multiple domain equations, one for each type. The ML type passed

to the isomorphism axioms module is (binding * mixfix * (typ * typ)) list,

which comprises a type name (ML type binding), type constructor syntax (ML

type mixfix), and the domain equation for each type.

For the constructor functions module, information about the constructors is as-

sembled, using ML type (binding * (bool * binding option * typ) list *



www.manaraa.com

125

type iso_info =
{

absT : typ, repT : typ,
abs_const : term, rep_const : term,
abs_inverse : thm, rep_inverse : thm

}

Figure 4.4: Record type for domain isomorphisms

mixfix) list. For each constructor, we have its name, the list of argument spec-

ifications, and its syntax; each argument has a boolean laziness flag, an optional

selector name, and the argument type. With mutually recursive domain defini-

tions, such a list is assembled for each new type.

4.3.2 Isomorphism axioms module

The input to the isomorphism axioms module consists of a name, syntax, and a

domain equation for each new type. The module performs the following steps:

First, it declares each new type constructor—instead of defining them with Type-

def or Cpodef, they are simply declared without a definition. Second, a pcpo

class instance is axiomatically asserted for each type. Third, a pair of abs and

rep functions corresponding to each domain equation is declared—again, without

providing a definition. Fourth, isomorphism axioms are generated, asserting that

each pair of abs and rep functions is an isomorphism.

The types, constants, and axioms generated by the isomorphism axioms module

are collected in the iso_info record type, shown in Fig. 4.4. The module produces

one such record for each mutually recursive domain.

The supporting theory files for the Domain package define a binary predicate

called iso, which asserts that its two arguments form a continuous isomorphism.

definition iso :: "(’a → ’b) ⇒ (’b → ’a) ⇒ bool"
where "iso abs rep ←→ (∀x. rep·(abs·x) = x) ∧ (∀y. abs·(rep·y) = y)"



www.manaraa.com

126

type take_info =
{

take_consts : term list, take_defs : thm list,
chain_take_thms : thm list, take_0_thms : thm list,
take_strict_thms : thm list, take_Suc_thms : thm list,
deflation_take_thms : thm list

}

Figure 4.5: Record type for take functions and related theorems

The axioms declared by the isomorphism module are sufficient to derive iso abs rep

as a theorem. (An alternative design would be to declare iso abs rep directly as the

axiom.) Other modules will use the iso predicate to derive various other properties

of the abs and rep functions.

4.3.3 Take functions module

The take functions module accepts input of type (binding * iso_info) list,

comprising a type name and isomorphism information for each new type. The

module defines a take function for each type and generates several theorems about

them, which are collected in an ML record of type take_info (Fig. 4.5).

Defining the take functions. Below is the take function for the stream data-

type, which is a solution to ’a stream ∼= one ⊕ (’a ⊗ ’a stream⊥). The take function

stream take n is defined as the nth iteration of a certain functional, consisting of

stream abs and stream rep composed with a combination of map functions. The

map functions are in a one-to-one correspondence with the type constructors that

appear on the right-hand side of the domain equation.

definition stream take :: "nat ⇒ ’a stream → ’a stream"
where "stream take n ≡ iterate n·(Λ f.
stream abs oo ssum map·ID·(sprod map·ID·(u map·f)) oo stream rep)·⊥"



www.manaraa.com

127

lemma [domain map ID]:
"u map·(ID :: ’a → ’a) = (ID :: ’a⊥ → ’a⊥)"
"prod map·(ID :: ’a → ’a)·(ID :: ’b → ’b) = (ID :: ’a × ’b → ’a × ’b)"
"sprod map·(ID :: ’a → ’a)·(ID :: ’b → ’b) = (ID :: ’a ⊗ ’b → ’a ⊗ ’b)"
"ssum map·(ID :: ’a → ’a)·(ID :: ’b → ’b) = (ID :: ’a ⊕ ’b → ’a ⊕ ’b)"
"cfun map·(ID :: ’a → ’a)·(ID :: ’b → ’b) = (ID :: (’a → ’b) → (’a → ’b))"

Figure 4.6: Extensible set of rules with the domain map ID attribute

To keep track of the map combinators associated with each type constructor,

the Domain package maintains a database of theorems with the [domain map ID]

attribute. Using a theorem attribute makes it relatively easy to add support for

additional type constructors, by adding new theorems to the database. The theo-

rems making up the initial contents of the database are shown in Fig. 4.6. We can

use these rules to generate a combination of map functions corresponding to any

given complex type expression: Starting with the identity function ID at the given

type, perform rewriting with the domain map ID rules, applying them right-to-left.

For mutually recursive domains, the take functions are defined in a manner

similar to how Fixrec handles mutual recursion: We construct a functional that

operates on tuples, and then project out the desired component using fst and snd.

domain ’a list1 = Nil1 | List2 "’a list2" and ’a list2 = Cons2 "’a" "’a list1"

definition list1 take :: "nat ⇒ ’a list1 → ’a list1"
where "list1 take n ≡ fst (iterate n·

(Λ f. (list1 abs oo ssum map·ID·(snd f) oo list1 rep,
list2 abs oo sprod map·ID·(fst f) oo list2 rep))·⊥)"

definition list2 take :: "nat ⇒ ’a list2 → ’a list2"
where "list2 take n ≡ snd (iterate n·

(Λ f. (list1 abs oo ssum map·ID·(snd f) oo list1 rep,
list2 abs oo sprod map·ID·(fst f) oo list2 rep))·⊥)"



www.manaraa.com

128

Note that unlike mutual recursion, indirect recursion does not require any spe-

cial treatment. Of the following two variations of the bintree datatype, one is

indirect-recursive and the other is not. However, they both give rise to the same

domain equation, and so the take function is defined identically for either one.

domain bintree = Tip | Branch "bintree ⊗ bintree"

domain bintree = Tip | Branch "bintree" "bintree"

Proving theorems about take functions. After defining the take functions,

the take function module proves several theorems about them. We will consider

the stream datatype as an example.

theorem stream.chain take [simp]: "chain (λn. stream take n)"

theorem stream.take 0 [simp]: "stream take 0 = ⊥"

theorem stream.take Suc: "stream take (Suc n) = stream abs oo
ssum map·ID·(sprod map·ID·(u map·(stream take n))) oo stream rep"

These first few lemmas are easy to prove. Theorem stream.chain take follows from

the fact that (λn. iterate n·F·⊥) is always a chain. (For mutually recursive take

functions, note that fst and snd are monotone, and thus preserve chains.) The

take 0 and take Suc theorems follow directly from the definitions by the properties

of iterate.

To help derive the other properties of stream take, we make use of a new con-

cept: A deflation is a continuous function f that is idempotent and below the

identity function, so that f oo f = f v ID. These are properties that are expected

to hold for every take function. We define the deflation predicate as follows.1

definition deflation :: "(’a → ’a) ⇒ bool"
where "deflation d ←→ (∀x. d·(d·x) = d·x) ∧ (∀x. d·x v x)"

1The deflation predicate is actually defined with a locale command, which generates a defini-
tion equivalent to the one shown here.



www.manaraa.com

129

lemma [domain deflation]:
"deflation ID"
"deflation f =⇒ deflation (u map·f)"
"Jdeflation f; deflation gK =⇒ deflation (prod map·f·g)"
"Jdeflation f; deflation gK =⇒ deflation (sprod map·f·g)"
"Jdeflation f; deflation gK =⇒ deflation (ssum map·f·g)"
"Jdeflation f; deflation gK =⇒ deflation (cfun map·f·g)"

Figure 4.7: Extensible set of rules with the domain deflation attribute

Showing that each take function is a deflation is the only really non-trivial

proof done by the take functions module. Once it is proved that stream take is a

chain of deflations, the module can easily derive the rest of the desired theorems

about stream take.

theorem stream.deflation take: "deflation (stream take n)"

The proof of stream.deflation take proceeds by induction on n. After unfolding

stream.take 0, the base case is trivial, because ⊥ is a deflation. In the induc-

tive case, we start by unfolding stream.take Suc. A suitably-instantiated rule

deflation abs rep is applied next, followed by deflation lemmas for the various

map combinators. The Domain package maintains a database of deflation lem-

mas that have the [domain deflation] attribute; Fig. 4.7 shows the initial set of

domain deflation rules.

lemma deflation abs rep:
"Jiso abs rep; deflation dK =⇒ deflation (abs oo d oo rep)"

For mutually recursive domains, the deflation take rules for all take functions must

be proved simultaneously, with a single induction on n. The other steps in the

deflation proof are similar to the single-domain case.

After proving stream.deflation take, we can derive the other theorems. Rules

stream.take below and stream.take strict follow directly from stream.deflation take.



www.manaraa.com

130

Theorem stream.take take also depends on the fact that stream take is a chain,

using the library lemma deflation chain min.

theorem stream.take below: "stream take n·x v x"

theorem stream.take strict: "stream take n·⊥ = ⊥"

theorem stream.take take:
"stream take m·(stream take n·x) = stream take (min m n)·x"

lemma deflation chain min:
"Jchain t; ∧n. deflation (t n)K =⇒ t m·(t n·x) = t (min m n)·x"

Finally, the take functions module collects the relevant theorems in a take_info

record, to be passed along to the later modules.

4.3.4 Reach axioms module

For each take function, the Domain package declares an axiom stating that the

least upper bound of the chain of take functions is the identity function. For

example, with the ’a stream type, the following axiom is declared:

axioms stream.lub take: "(⊔n. stream take n) = ID"

For mutually recursive domain definitions, one axiom is declared for each new type.

This list of axioms is then passed along to the take induction module.

4.3.5 Take induction module

The take induction module takes three pieces of input: a list of type (binding *

iso_info) list from the isomorphism axioms module, a take_info record from

the take functions module, and a thm list containing lub take theorems from the

reach axioms module. The take induction module then derives a few low-level

induction principles involving the take functions, and packages up the results in

an ML record of type take_induct_info (Fig. 4.8).



www.manaraa.com

131

type take_induct_info =
{

take_info : take_info,
lub_take_thms : thm list,
reach_thms : thm list,
take_lemma_thms : thm list,
is_finite : bool,
take_induct_thms : thm list

}

Figure 4.8: Record type for Domain package theorems related to take induction

For each new type, the take induction module generates three new theorems

in addition to the lub take axiom: the reach lemma, the take lemma, and the take

induction rule. For the stream datatype, these are as follows.

theorem stream.reach: "(⊔n. stream take n·x) = x"

theorem stream.take lemma:
"(∧n. stream take n·x = stream take n·y) =⇒ x = y"

theorem stream.take induct: "Jadm P; ∧n. P (stream take n·x)K =⇒ P x"

Each of these is derived easily from theorems stream.chain take and stream.lub take,

using an appropriate library lemma.

lemma lub ID reach:
assumes "chain t" and "(⊔n. t n) = ID"
shows "(⊔n. t n·x) = x"

lemma lub ID take lemma:
assumes "chain t" and "(⊔n. t n) = ID"
shows "(∧n. t n·x = t n·y) =⇒ x = y"

lemma lub ID take induct:
assumes "chain t" and "(⊔n. t n) = ID"
shows "Jadm P; ∧n. P (t n·x)K =⇒ P x"



www.manaraa.com

132

Finite-valued domains. The take induction module’s job is not always quite

this easy. Recall that strict recursive datatypes contain only finite values: In these

cases we must generate a take induction rule without an admissibility condition.

To determine whether or not a domain (or set of mutually recursive domains) is

finite-valued, the take induction module performs a test on its associated domain

equation. For example, consider the strict list datatype:

domain ’a strictlist = nil | cons "’a" "’a strictlist"

The domain equation is ’a strictlist ∼= one ⊕ (’a ⊗ ’a strictlist). Note that the only

type constructors surrounding the recursive occurrence of ’a strictlist on the right-

hand side are the strict sum and strict product. This indicates that ’a strictlist is a

finite-valued domain. Equivalently, we might notice that the only map combinators

mentioned in the definition of strictlist take are ssum map and sprod map.

theorem strictlist.take Suc: "strictlist take (Suc n) = strictlist abs oo
ssum map·ID·(sprod map·ID·(strictlist take n)) oo strictlist rep"

On the other hand, for lazy streams we have ’a stream ∼= one ⊕ (’a ⊗ ’a stream⊥)

as the domain equation. The presence of lifting on the recursive occurrence of

’a stream indicates that this is not a finite-valued domain.

In order to prove a take induction principle for ’a strictlist without an admis-

sibility condition, we will show that strictlist take satisfies a particular property,

which we call decisiveness. (Note that decisiveness is not a standard concept in

domain theory, but rather an invention of the present author.) A decisive func-

tion is a particular kind of deflation that makes an all-or-nothing choice for each

input value: The function either returns its input value, or else it returns ⊥. The

HOLCF definition of the predicate decisive is shown in Fig. 4.9, along with several

related lemmas. Note that decisiveness is preserved by ssum map and sprod map,

but not by any of the other map combinators; this is why it is important that only

ssum map and sprod map are used in the definition of strictlist take.



www.manaraa.com

133

definition decisive :: "(’a → ’a) ⇒ bool"
where "decisive f ←→ (∀x. f·x = x ∨ f·x = ⊥)"

lemma decisive bottom: "decisive ⊥"

lemma decisive ID: "decisive ID"

lemma decisive ssum map: "Jdecisive f; decisive gK =⇒ decisive (ssum map·f·g)"

lemma decisive sprod map: "Jdecisive f; decisive gK =⇒ decisive (sprod map·f·g)"

lemma decisive abs rep: "Jiso abs rep; decisive fK =⇒ decisive (abs oo f oo rep)"

Figure 4.9: Definition and properties of decisive deflations

The proof of decisive (strictlist take n) proceeds by induction on n. Each case is

solved with the help of the various lemmas about decisive shown in Fig. 4.9. The

proof structure is exactly the same as for the deflation take proofs done by the take

functions module.

Having proved the decisiveness of strictlist take, the take induction rule can be

derived using the library lemma lub ID finite take induct.

lemma lub ID finite take induct:
assumes "chain t" and "(⊔n. t n) = ID" and "∧n. decisive (t n)"
shows "(∧n. P (t n·x)) =⇒ P x"

To prove this lemma, it is sufficient to show that there exists n such that t n·x = x.

Now consider the chain (λn. t n·x), which has a finite range: Because each t n is

decisive, the chain’s range is a subset of {⊥, x}. As a finite chain, it must attain

its least upper bound at some point.

Ultimately the take induction module wraps up all the new theorems in a

take_induct_info record to pass along to the induction rules module. This record

also includes the original take_info record, and a boolean flag to indicate finite-

valued domains.



www.manaraa.com

134

type constr_info =
{

iso_info : iso_info,
con_specs : (term * (bool * typ) list) list,
con_betas : thm list,
nchotomy : thm, exhaust : thm,
compacts : thm list, con_rews : thm list,
inverts : thm list, injects : thm list,
dist_les : thm list, dist_eqs : thm list,
case_rews : thm list, sel_rews : thm list,
dis_rews : thm list, match_rews : thm list

}

Figure 4.10: Record type for constructor-related constants and theorems

4.3.6 Constructor functions module

The constructor functions module is called with three pieces of input: a binding

for the type name, an iso_info record from the isomorphism axioms module, and a

list of constructor specifications of type (binding * (bool * binding option *

typ) list * mixfix) list. Each call to the module deals with a single domain

equation; with mutually recursive definitions the module is called multiple times,

once for each new type.

The constructor functions module returns a constr_info record filled with

generated constants and theorems (Fig. 4.10). The remainder of this section is

organized into subheadings, each corresponding to one or more fields of this record.

The ’a stream type is a bit too simple to adequately demonstrate all the features

of the constructor functions module. Instead, we will use this slightly more complex

(’a, ’b) tree datatype as a running example.

domain (’a, ’b) tree =
Tip | Leaf "’a" |
Node (left :: "(’a, ’b) tree") (lazy middle :: "’b") (right :: "(’a, ’b) tree")



www.manaraa.com

135

Defining the constructors. Each constructor is defined using the tree abs func-

tion from the isomorphism together with some combination of the HOLCF data

constructors spair, sinl, sinr, ONE, and up.

"Tip = abs tree·(sinl·ONE)"
"Leaf = (Λ a. abs tree·(sinr·(sinl·a)))"
"Node = (Λ t1 b t2. abs tree·(sinr·(sinr·(:t1, up·b, t2:))))"

At the time the constructor constants are defined, the module also declares any

infix syntax that may have been specified.

After defining the constructor functions, the module fills in the con_specs field

of result record with an ML value of type (term * (bool * typ) list) list.

For each constructor, we have the actual constructor constant (ML type term) and

a list of argument specifications, each consisting of a laziness flag and an argument

type. We discard information about syntax and selector functions, because the

induction rules module does not need it.

After defining the constructor functions, the next step is to prove rules for

unfolding the definitions of fully-applied constructors. These rules occupy the

con_betas field of the results record, and will be used in many other internal

proofs.

Each constructor function is defined with continuous lambda abstractions,

which require continuity checks to beta-reduce. Domain definitions with many-

argument constructors produce equally large numbers of continuity conditions,

which can get expensive to check. For this reason, we use the bottom-up conti-

nuity proof method described in Chapter 2, which saves time by reusing common

subproofs.

have con betas:
"Tip = abs tree·(sinl·ONE)"
"∧a. Leaf·a = abs tree·(sinr·(sinl·a))"
"∧ t1 b t2. Node·t1·b·t2 = abs tree·(sinr·(sinr·(:t1, up·b, t2:)))"



www.manaraa.com

136

The original HOLCF ’99 Domain package did not have an equivalent of the

con betas rules. Instead, every proof about the constructors simply unfolded the

raw constructor definitions, and beta-reduced them using the simplifier. Thus the

same continuity checks were done again and again, separately in each generated

theorem—and even worse, the time required for each check was exponential in the

number of nested lambdas. For domain definitions with constructors of more than

two or three arguments, the continuity proofs dominated the entire running time

of the Domain package, and constructors with more than four or five arguments

were simply infeasible. In contrast, the HOLCF ’11 Domain package scales much

better to large numbers of constructor arguments; continuity checks are no longer

a performance bottleneck.

Exhaustiveness of constructors. After defining the constructors, the Domain

package proceeds to prove that the constructors are exhaustive. The HOLCF ’11

Domain package uses a novel proof method, based on rewriting, to generate the

exhaustiveness theorem efficiently; we will examine it in some detail.

The method involves generating a type-specific exhaustiveness rule starting

from a generic one, using a set of type-directed rewrite rules. The generic starting

rule, which is valid for any pcpo, is called exh start; it merely states that any value

p either is or is not equal to ⊥.

lemma exh start: "p = ⊥ ∨ (∃x. p = x ∧ x 6= ⊥)"

Next, we have the set of type-directed rewrite rules:

lemma ex bottom iffs:
"(∃x. P x ∧ x 6= ⊥) ←→ (∃x. P (sinl·x) ∧ x 6= ⊥) ∨ (∃x. P (sinr·x) ∧ x 6= ⊥)"
"(∃x. P x ∧ x 6= ⊥) ←→ (∃x y. (P (:x, y:) ∧ x 6= ⊥) ∧ y 6= ⊥)"
"(∃x. P x ∧ x 6= ⊥) ←→ (∃x y. P (:up·x, y:) ∧ y 6= ⊥)"
"(∃x. P x ∧ x 6= ⊥) ←→ (∃x. P (up·x))"
"(∃x. P x ∧ x 6= ⊥) ←→ P ONE"



www.manaraa.com

137

Each of the rewrite rules has the same pattern on the left-hand side, namely

(∃x. P x ∧ x 6= ⊥). However, each of these rules places a different type constraint

on the variable x. Also note that many of the rules’ right-hand sides also contain

instances of the same pattern, but at smaller types. So rewriting with ex bottom iffs

may continue for several steps, but it always terminates.

Now we will step through the process of deriving an exhaustiveness theorem

for the (’a, ’b) tree datatype. We start by instantiating the theorem exh start at a

type similar to the representation type for (’a, ’b) tree.

have thm1: "(p :: one ⊕ ’a ⊕ (’c ⊗ ’b⊥ ⊗ ’d)) = ⊥ ∨ (∃x. p = x ∧ x 6= ⊥)"

Next, we rewrite this intermediate theorem, using the rules in ex bottom iffs.

have thm2: "p = ⊥ ∨ p = sinl·ONE ∨ (∃x. p = sinr·(sinl·x) ∧ x 6= ⊥) ∨
(∃x y z. (p = sinr·(sinr·(:x, up·y, z:)) ∧ x 6= ⊥) ∧ z 6= ⊥)"

Then thm2 is rewritten to re-associate the conjunctions to the right, resulting

in another temporary theorem thm3. Now we will use thm3 to prove that the

constructors of domain (’a, ’b) tree are exhaustive:

theorem tree.nchotomy:
"y = ⊥ ∨ y = Tip ∨ (∃a. y = Leaf·a ∧ a 6= ⊥) ∨
(∃t1 b t2. y = Node·t1·b·t2 ∧ t1 6= ⊥ ∧ t2 6= ⊥)"

The proof starts by unfolding con betas. Next, we can rewrite occurrences of

x = tree abs·y to tree rep·x = y, and x = ⊥ to tree rep·x = ⊥, using rules derived

from the isomorphism axioms. This produces a goal that can be solved directly by

the temporary theorem thm3.

After proving tree.nchotomy, the case analysis rule tree.exhaust can be derived

from it.

theorem tree.exhaust:
"Jy = ⊥ =⇒ P; y = Tip =⇒ P; ∧a. Jy = Leaf·a; a 6= ⊥K =⇒ P;∧t1 b t2. Jy = Node·t1·b·t2; t1 6= ⊥; t2 6= ⊥K =⇒ PK =⇒ P"



www.manaraa.com

138

The derivation starts by composing tree.nchotomy with exh casedist0; this rule

transforms a theorem with conclusion R into an elimination rule of the form

(R =⇒ P) =⇒ P. This rule is then rewritten with exh casedists, yielding theorem

tree.exhaust.

lemma exh casedist0: "JR; R =⇒ PK =⇒ P"

lemma exh casedists:
"((P ∨ Q =⇒ R) =⇒ S) ≡ (JP =⇒ R; Q =⇒ RK =⇒ S)"
"((∃x. P x) =⇒ Q) ≡ (∧x. P x =⇒ Q)"
"(P ∧ Q =⇒ R) ≡ (JP; QK =⇒ R)"

These proof methods for generating nchotomy and exhaust theorems are far

faster than the methods used by the HOLCF ’99 Domain package. In the earlier

version, these theorems were proved by repeatedly performing case analyses on

strict sum and product types. Many redundant cases involving ⊥ were produced,

each of which had to be solved by the simplifier. The number of such steps was

proportional to the size of the definition; the time spent on this one proof made

up a significant portion of the running time for the Domain package. In contrast,

the new version calls a short, finite list of proof tactics that all run quickly.

Simplification rules for constructors. The constructor functions module gen-

erates several groups of simplification rules about the constructors: There are rules

about compactness, strictness, definedness, distinctness, injectivity, and order com-

parisons.

• tree.compacts: For each constructor, we get a rule stating that the constructor

is compact if all its arguments are compact.

"compact Tip"
"compact a =⇒ compact (Leaf·a)"
"Jcompact t1; compact b; compact t2K =⇒ compact (Node·t1·b·t2)"



www.manaraa.com

139

• tree.con rews (1): For each non-lazy argument position of each constructor,

we get a strictness rule showing that the constructor applied to ⊥ equals ⊥.

"Leaf·⊥ = ⊥"
"Node·⊥·b·t2 = ⊥"
"Node·t1·b·⊥ = ⊥"

• tree.con rews (2): For each constructor, we get a definedness rule stating that

the constructor equals ⊥ if and only if one of its non-lazy arguments equals

⊥. The proofs are by unfolding con betas and simplifying with definedness

rules for tree abs, sinl, sinr, spair, up, and ONE.

"Tip 6= ⊥"
"Leaf·a = ⊥ ←→ a = ⊥"
"Node·t1·b·t2 = ⊥ ←→ t1 = ⊥ ∨ t2 = ⊥"

• tree.dist les: For each pair of distinct constructors, we get a rule stating

that constructor 1 is below constructor 2 if and only if one of the non-lazy

arguments of constructor 1 is ⊥.

"Tip 6v Leaf·a’"
"Tip 6v Node·t1’·b’·t2’"
"Leaf·a v Tip ←→ a = ⊥"
"Leaf·a v Node·t1’·b’·t2’ ←→ a = ⊥"
"Node·t1·b·t2 v Tip ←→ t1 = ⊥ ∨ t2 = ⊥"
"Node·t1·b·t2 v Leaf·a’ ←→ t1 = ⊥ ∨ t2 = ⊥"

• tree.dist eqs: For each pair of distinct constructors, we get a rule stating that

constructor 1 is equal to constructor 2 if and only if both constructors have

at least one non-lazy argument equal to ⊥.

"Tip 6= Leaf·a’"
"Tip 6= Node·t1’·b’·t2’"
"Leaf·a 6= Tip"
"Leaf·a = Node·t1’·b’·t2’ ←→ a = ⊥ ∧ (t1’ = ⊥ ∨ t2’ = ⊥)"
"Node·t1·b·t2 6= Tip"
"Node·t1·b·t2 = Leaf·a’ ←→ (t1 = ⊥ ∨ t2 = ⊥) ∧ a’ = ⊥"



www.manaraa.com

140

• tree.inverts: For each constructor (except those with no arguments) we have

a rule stating that two applications of the same constructor are related by

(v) if and only if their arguments are also pointwise related by (v); this is

under the assumption that none of the strict arguments on the left-hand side

are ⊥.

"Leaf·a v Leaf·a’ ←→ a v a’"
"Jt1 6= ⊥; t2 6= ⊥K

=⇒ Node·t1·b·t2 v Node·t1’·b’·t2’ ←→ t1 v t1’ ∧ b v b’ ∧ t2 v t2’"

• tree.injects: An injectivity rule is generated for each constructor that has at

least one argument: Two applications of the same constructor are equal if

and only if the corresponding arguments are equal. These rules use the same

definedness assumptions as tree.inverts.

"Leaf·a = Leaf·a’ ←→ a = a’"
"Jt1 6= ⊥; t2 6= ⊥K

=⇒ Node·t1·b·t2 = Node·t1’·b’·t2’ ←→ t1 = t1’ ∧ b = b’ ∧ t2 = t2’"

The proofs for all of these simplification rules are essentially the same. Each

starts by unfolding the constructor definitions, using con betas. The proofs are then

completed by calling the simplifier with a particular set of rewrite rules: Because

each constructor is defined in terms of the basic HOLCF constructors spair, sinl,

sinr, and up, the various properties (compactness, strictness, injectivity, etc.) of

the new constructors derive from similar properties of these basic constructors.

In addition to spair, sinl, sinr, and up, the constructor definitions also mention

abs functions, like tree abs for the (’a, ’b) tree datatype. Accordingly, rules about

compactness, strictness, injectivity, etc. for tree abs are also needed to complete the

proofs. Each of these properties of tree abs can be derived from the isomorphism

axioms, using a few library lemmas.

lemma iso.compact abs: "Jiso abs rep; compact xK =⇒ compact (abs·x)"



www.manaraa.com

141

lemma iso.abs strict: "iso abs rep =⇒ abs·⊥ = ⊥"

lemma iso.abs bottom iff: "iso abs rep =⇒ abs·x = ⊥ ←→ x = ⊥"

lemma iso.abs below: "iso abs rep =⇒ abs·x v abs·y ←→ x v y"

lemma iso.abs eq: "iso abs rep =⇒ abs·x = abs·y ←→ x = y"

Most of the same simplification rules for constructors were also generated by the

original HOLCF ’99 Domain package, but not necessarily in the same form. For

example, con rews used to have conditional rules like a 6= ⊥ =⇒ SCons·a·s 6= ⊥;

the if-and-only-if formulation preferred by the HOLCF ’11 version works better as

a simplification rule.

Case combinator. The case combinator tree case is defined in terms of the case

combinators for the lifted unit, strict sum, strict product, and lifted cpo types,

together with tree rep.

sscase :: (’a → ’c) → (’b → ’c) → ’a ⊕ ’b → ’c
ssplit :: (’a → ’b → ’c) → ’a ⊗ ’b → ’c
fup :: (’a → ’b) → ’a⊥ → ’b
one case :: ’a → one → ’a

Recall from Chapter 2 that ssplit, fup, and one case all have special syntax as

continuous lambda abstractions with patterns.

The tree case function takes arguments f1, f2, and f3—one corresponding to

each constructor. For each of these, a lambda abstraction of a strict tuple (us-

ing ssplit) is built, with one element for each constructor argument. Each lazy

argument position has an additional up pattern (using fup). For zero-argument

constructors, a ONE pattern (using one case) takes the place of a strict tuple pat-

tern. All of these abstractions are then combined with sscase.

definition tree case :: "’c → (’a → ’c)
→ ((’a, ’b) tree → ’b → (’a, ’b) tree → ’c) → (’a, ’b) tree → ’c"



www.manaraa.com

142

where "tree case ≡ (Λ f1 f2 f3. sscase·(Λ ONE. f1)·
(sscase·(Λ a. f2·a)·(Λ (:t1, up·b, t2:). f3·t1·b·t2)) oo tree rep)"

Simplification rules are generated for the case combinator applied to ⊥, and to

each constructor.

lemma tree.case rews [simp]:
"tree case·f1·f2·f3·⊥ = ⊥"
"tree case·f1·f2·f3·Tip = f1"
"a 6= ⊥ =⇒ tree case·f1·f2·f3·(Leaf·a) = f2·a
"Jt1 6= ⊥; t2 6= ⊥K =⇒ tree case·f1·f2·f3·(Node·t1·b·t2) = f3·t1·b·t2"

The proofs are by unfolding the definition of tree case, unfolding con betas, and

then calling the simplifier. To speed up the beta-reduction of the nested lambdas in

the definition of tree case, the constructor functions module uses the same bottom-

up continuity prover used to generate con betas; this helps to avoid performance

problems in domain definitions with large numbers of constructors.

Selector functions. A selector function is produced for each constructor argu-

ment that has been given a selector name. Each selector is defined as a composition

of the rep function with some sequence of functions from this list:

sfst :: ’a ⊗ ’b → ’a
ssnd :: ’a ⊗ ’b → ’b
sscase·ID·⊥ :: ’a ⊕ ’b → ’a
sscase·⊥·ID :: ’a ⊕ ’b → ’b
fup·ID :: ’a⊥ → ’a

For example, below are the definitions of the left and middle selectors, which project

arguments of the Node constructor of the (’a, ’b) tree datatype.

definition left :: "(’a, ’b) tree → (’a, ’b) tree"
where "left ≡ sfst oo sscase·⊥·ID oo sscase·⊥·ID oo tree rep"

definition middle :: "(’a, ’b) tree → ’b"
where "middle ≡
fup·ID oo sfst oo ssnd oo sscase·⊥·ID oo sscase·⊥·ID oo tree rep"



www.manaraa.com

143

The constructor functions module produces rules for each selector applied to ⊥,

and to each constructor. Definedness conditions are only needed when the selector

is applied to the correct constructor, and then only for strict arguments other than

the one being selected.

lemma tree.sel rews [simp]:
"left·⊥ = ⊥"
"left·Tip = ⊥"
"left·(Leaf·a) = ⊥"
"t2 6= ⊥ =⇒ left·(Node·t1·b·t2) = t1"

Only the rules for the selector left are shown here; similar rules are generated for the

selectors middle and right. They are proved by unfolding the selector definitions,

unfolding con betas, and calling the simplifier.

Discriminator functions. For each constructor, a discriminator function is de-

fined in terms of the case combinator. One branch returns TT, and the rest return

FF. Below is the definition of the discriminator is Leaf for the (’a, ’b) tree datatype,

in terms of tree case.

definition is Leaf :: "(’a, ’b) tree → tr"
where "is Leaf ≡ tree case·FF·(Λ a. TT)·(Λ t1 b t2. FF)"

Discriminators for the Tip and Node constructors are defined similarly. For each

discriminator, we generate rules for the discriminator applied to each constructor

as well as to ⊥. These rules follow directly from the rewrite rules for tree case. We

also generate if-and-only-if definedness rules like is Leaf·x = ⊥ ←→ x = ⊥, which

are proved by case analysis on x.

Fixrec match combinators. As with the discriminator functions, we also define

the match combinators for Fixrec in terms of the case combinator tree case.

Each match combinator takes two arguments: the scrutinee x, and the match



www.manaraa.com

144

continuation k. The continuation is used for the case branch of the matching

constructor; every other branch returns fail, indicating pattern match failure.

definition match Tip :: "(’a, ’b) tree → ’c match → ’c match"
where "match Tip ≡ (Λ x k. tree case·k·(Λ a. fail)·(Λ t1 b t2. fail)·x)"

definition match Leaf :: "(’a, ’b) tree → (’a → ’c match) → ’c match"
where "match Leaf ≡ (Λ x k. tree case·fail·k·(Λ t1 b t2. fail)·x)"

definition match Node ::
"(’a, ’b) tree → ((’a, ’b) tree → ’b → (’a, ’b) tree → ’c match) → ’c match"

where "match Node ≡ (Λ x k. tree case·fail·(Λ a. fail)·k·x)"

For each match combinator, we generate rules for applications to each constructor

as well as to ⊥. As with the discriminator rules, these are proved by simplification

with tree.case rews.

lemma tree.match rews [simp]:
"match Leaf·⊥·k = ⊥"
"match Leaf·Tip·k = fail"
"a 6= ⊥ =⇒ match Leaf·(Leaf·a)·k = k·a"
"Jt1 6= ⊥; t2 6= ⊥K =⇒ match Leaf·(Node·t1·b·t2)·k = fail"

Only the rules for match Leaf are shown here; in actuality tree.match rews also

includes similar rules for match Tip and match Node.

In addition to proving simplification rules for the match combinators, the con-

structor functions module also registers each match combinator with the Fixrec

package, associating them with the corresponding constructors.

4.3.7 Take rules module

This is a small module whose sole purpose is to produce simplification rules for the

take functions applied to constructors. As input, it gets a take_info record from

the take functions module, and a list of constr_info records from the constructor

functions module. It produces lists of take rews theorems, which are passed on to

the induction rules module.



www.manaraa.com

145

theorem tree.take rews [simp]:
"tree take (Suc n)·Tip = Tip"
"tree take (Suc n)·(Leaf·a) = Leaf·a"
"tree take (Suc n)·(Node·t1·b·t2) = Node·(tree take n·t1)·b·(tree take n·t2)"

Note that because take functions are strict, definedness assumptions are not needed

on any of the take rews theorems. The proofs proceed by unfolding con betas and

tree.take Suc, and then calling the simplifier.

4.3.8 Induction rules module

As input, the induction rules module gets a take_induct_info record from the

take induction module, and a list of constr_info records from the constructor

functions module; it also receives lists of take rews theorems from the take rules

module. In turn, it produces high-level induction rules. (It also defines a bisim-

ulation predicate and proves a coinduction rule. But because this part of the

Domain package has changed little since the original version [Ohe97, MNOS99],

and coinduction is not used elsewhere in this thesis, we omit a full description of

its implementation.)

As a first step toward proving the high-level induction rule, the induction rules

module starts by proving the finite induction rule. It assumes that each constructor

preserves some predicate P; the conclusion asserts that P must then hold for any

output of the take function.

theorem tree.finite induct:
assumes "P ⊥" and "P Tip" and "∧a. a 6= ⊥ =⇒ P (Leaf·a)"
and "∧t1 b t2. Jt1 6= ⊥; t2 6= ⊥; P t1; P t2K =⇒ P (Node·t1·b·t2)"

shows "P (tree take n·x)"

To prove the finite induction rule, the first step is to use the assumption "P ⊥"

to derive stronger, unconditional versions of the other assumptions. These can be

shown by case analysis on whether each argument equals ⊥, using the strictness

rules for the constructors.



www.manaraa.com

146

have "P Tip" and "∧a. P (Leaf·a)"
and "∧t1 b t2. JP t1; P t2K =⇒ P (Node·t1·b·t2)"

Using these strengthened assumptions, we proceed to show ∀x. P (tree take n·x) by

induction on n. For the base case n = 0, the goal simplifies to P ⊥, which matches

one of the assumptions. In the n = Suc n’ case, we do a case analysis on x, and

then simplify each subcase with tree.take rews. Each subgoal is then discharged

using the strengthened assumptions together with the inductive hypothesis.

The main induction rule makes the exact same assumptions about P as the

finite induction rule, but has a more general conclusion. It is derived directly from

tree.finite induct by composing it with the take induction rule tree.take induct.

theorem tree.take induct: "(∧n. P (tree take n·x)) =⇒ P x"

theorem tree.induct:
assumes "P ⊥" and "P Tip" and "∧a. a 6= ⊥ =⇒ P (Leaf·a)"
and "∧t1 b t2. Jt1 6= ⊥; t2 6= ⊥; P t1; P t2K =⇒ P (Node·t1·b·t2)"

shows "P x"

Note that type (’a, ’b) tree is finite-valued, because all of the recursive construc-

tor arguments are strict. Thus, neither tree.take induct nor tree.induct requires an

admissibility assumption. On the other hand, the lazy ’a stream datatype contains

infinite values, and its take induction rule stream.take induct does have an admis-

sibility assumption. The high-level induction rule stream.induct thus inherits the

admissibility requirement from stream.take induct.

theorem stream.induct:
"Jadm P; P ⊥; P SNil; ∧a s. Ja 6= ⊥; P sK =⇒ P (SCons·a·s)K =⇒ P x"

The proof scripts used to generate high-level induction rules only work if recur-

sive occurrences of types are used directly as type constructor arguments—they

do not work with indirect recursion. For this reason, the induction rules module

explicitly tests for indirect recursion; if it is detected, the proofs of the high-level

induction rules are skipped.



www.manaraa.com

147

4.4 DISCUSSION

The Domain package offers HOLCF users an easy way to define new recursive

datatypes. In addition to defining datatypes and constructors, the Domain pack-

age also generates numerous auxiliary functions and theorems, giving HOLCF users

an easy way to reason about their new datatypes.

The HOLCF ’11 Domain package improves over the original HOLCF ’99 ver-

sion in several ways. Many of the improvements help to expand the set of programs

that it is possible to reason about in HOLCF, which is one of the goals set out

in Chapter 1. For example, the HOLCF ’11 version is faster and scales better to

larger definitions, making it possible to verify Haskell programs with large, com-

plex datatypes that were previously infeasible. The support for indirect recursion

also expands the universe of datatypes that can be formalized in HOLCF, but in

a different direction.

The integration with the Fixrec package is very important by this measure

because it lets users formalize programs that do pattern-matching on user-defined

datatypes—something found in nearly every Haskell program. Having Fixrec

integration means that users can translate more programs directly from Haskell

to HOLCF, without having to rearrange them to work around limitations of the

theorem prover.

4.4.1 Problems with axioms

The LCF theorem prover architecture, with a small proof kernel that implements

an abstract theorem type, is designed to keep the trusted code base to a bare

minimum—this is the code that users have to trust in order to believe that the

system is sound. The prover can then be extended with new definition packages,

or other arbitrary code that lives outside the kernel, without increasing the trusted



www.manaraa.com

148

code base at all. Because all theorems are constructed ultimately by kernel oper-

ations, the theorems are still guaranteed to be correct.

This soundness argument can break down if users can freely declare axioms. If

an inconsistent set of axioms is declared, then it becomes possible to derive false

theorems—to have soundness, users must trust that all axioms in the system are

consistent. So if a package requires a few new axioms, the correctness of those

axioms must be trusted. But if a package generates new axioms, then we have to

trust all the code involved in generating the axioms. A bug in any of this code can

cause the prover to become unsound.

This is exactly what happened with the HOLCF ’99 Domain package. The

consistency of the kinds of axioms that arise from simple recursive datatype def-

initions was justified by an informal proof on paper [Ohe97]. There was nothing

wrong with the informal proof—indeed, as long as the Domain package was used

in a manner consistent with the expectations of the designer, the axioms it gener-

ated were always consistent.

However, a bug in the implementation allowed the Domain package to accept

some definitions that were outside the scope of the informal proof—specifically,

indirect-recursive definitions. It turns out that indirect-recursive definitions in-

volving strict sums and products, lifting, or continuous function space are gener-

ally sound. However, indirect recursion with the full function space is not sound

in general.

domain paradox = MkParadox "paradox ⇒ one"

The HOLCF ’99 Domain package would accept this definition of paradox, and

axiomatize an isomorphism between types paradox and paradox ⇒ one. Recall

that one is a two-element type, so this is essentially an isomorphism between a

(nonempty) type and its powerset. A proof of False can be derived from this with

a bit more work.



www.manaraa.com

149

This particular bug has been patched; the HOLCF ’11 Domain package now

tests for indirect recursion, and disallows it except for type constructors that it

knows are safe. However, the overall situation is not much better than before: As

long as axioms are still being generated, it is difficult to trust the soundness of the

whole system.

Most of the rest of this dissertation focuses on a solution to this problem: How

to implement a trustworthy Domain package that doesn’t take any shortcuts,

and uses explicit definitions instead of declaring axioms. But before getting into

the semantics of recursive datatypes, the next chapter focuses instead on another

language feature: nondeterminism. Along the way, we will develop some infras-

tructure which will eventually be useful for implementing a definitional Domain

package.



www.manaraa.com

150

Chapter 5

POWERDOMAINS AND IDEAL COMPLETION

5.1 INTRODUCTION

Powerdomains are a domain-theoretic analog of powersets, which were designed

for reasoning about the semantics of nondeterministic programs [Plo76]. In turn,

nondeterminism can be used to model other features of real-world programs, such

as concurrency [Pap01a, Thi95] and exceptions [PJRH+99].

This chapter describes the first fully-mechanized formalization of powerdo-

mains, which was originally presented in earlier work by the present author [Huf08].

It is implemented in the Isabelle theorem prover as part of HOLCF ’11. The pow-

erdomain library provides an abstract view of powerdomains to the user, hiding

the complicated implementation details. The library also provides proof automa-

tion, in the form of sets of rewrite rules for solving equalities and inequalities on

powerdomains.

The development of powerdomains in HOLCF ’11 follows the ideal completion

construction presented by Gunter and Scott [GS90, §5.2]. Some alternative con-

structions are also given by Abramsky and Jung [AJ94, §6.2]; the ideal completion

method was chosen because it required the formalization of a minimal amount of

supporting theories, and it offered good opportunities for proof reuse.

One side-benefit that came from the powerdomain formalization effort is the

HOLCF ’11 ideal completion library. Originally created specifically to construct

powerdomains, it is now generally useful for constructing other cpos in HOLCF,

particularly the universal domain (see Chapter 6).



www.manaraa.com

151

Another significant aspect of the work described in this chapter is the identi-

fication of a suitable category of domains—the bifinite domains—to serve as the

default class in HOLCF ’11. This was a forward-looking design decision: The

choice was made not just because of the requirements of the powerdomain library,

but also considering the eventual requirements of the universal domain and the def-

initional Domain package (Chapter 6), and the relationships among all of these

libraries and tools. The end result is a powerdomain library that integrates seam-

lessly with the definitional Domain package (see the concurrency case study in

Chapter 7).

Contributions. The original contributions presented in this chapter comprise

features of the powerdomain library itself, as well as parts of the supporting li-

braries that are more generally useful.

• Formalization of three powerdomain types (upper, lower, and convex) with

which users can reason about nondeterministic programs

• Collections of coordinated rewrite rules that provide automation for solving

comparisons between powerdomain values

• A formalization of the category of bifinite domains

• A general library of ideal completion that can be reused for defining other

cpo types

Overview. This chapter starts by motivating the definition of powerdomains,

pointing out the limitations of powersets and Haskell datatypes for modeling non-

deterministic computation (§5.2). Next we examine the three main varieties of

powerdomains, and attempt to convey some intuitions about their structures and

what each is good for (§ 5.3). For readers wishing to use the HOLCF ’11 power-

domain library, we then summarize all of the powerdomain operations provided by

the library, as well as some of the lemmas and proof automation that is available



www.manaraa.com

152

(§5.4). A description of the implementation of the library follows: We explain the

general process of ideal completion and its formalization in HOLCF (§5.5), define a

class of bifinite cpos that work with it (§5.6), and then show how ideal completion

is used to implement the powerdomain library (§5.7). Finally, we have a com-

parison with previous work and discuss possible applications of the powerdomain

library (§5.8).

5.2 NONDETERMINISM MONADS

From a functional programmer’s perspective, a powerdomain can be thought of as

simply a special kind of monad for nondeterminism. A monad is a type construc-

tor that represents computations; different monads can model computations with

different kinds of side-effects. Every monad has a return operation to represent

pure computations (i.e., computations with no side-effects) and a bind operation

to represent sequencing of computations. In addition to return and bind, a pow-

erdomain also provides a binary operation for making a nondeterministic choice;

the nondeterminism can be considered as a kind of side-effect of the computation.

In the remainder of this section, we will consider a few different monads that

can represent nondeterminic computations. Each example satisfies some, but not

all, of the required properties of a powerdomain.

The set monad. One way to model nondeterministic computations is using sets:

A nondeterministic computation returning a value of type A can be modeled as a

set S ∈ P(A) of possible return values. Similarly, a parameterized computation

taking input of type A and returning output of type B can be modeled as a function

f : A→ P(B).

We can build up such sets and functions from smaller components using a few

basic operations. First, a singleton set like {x} represents a pure computation (i.e.,



www.manaraa.com

153

one that is completely deterministic). Second, a general union like ⋃
x∈S f(x) rep-

resents sequenced computations: The set S models the first computation, whose

result is bound to the variable x; then the set f(x) represents the second com-

putation, which may depend on the output of the first. Finally, a binary union

like S ∪ T represents a nondeterministic choice: Each set models an alternative

computation, and the combined computation chooses randomly which branch to

take.

These operations make sets into a nondeterminism monad, where return(x) =

{x} and bind(S, f) = ⋃
x∈S f(x). Binary union serves as the nondeterministic

choice operator. The operations of the set monad satisfy several useful laws:

⋃
x∈{a} f(x) = f(a) (5.1)⋃

x∈A{x} = A (5.2)⋃
y∈(⋃

x∈A
f(x)) g(y) = ⋃

x∈A
⋃
y∈f(x) g(y) (5.3)

⋃
x∈(A∪B) f(x) = (⋃

x∈A f(x)) ∪ (⋃
x∈B f(x)) (5.4)

(A ∪B) ∪ C = A ∪ (B ∪ C) (5.5)

A ∪B = B ∪ A (5.6)

A ∪ A = A (5.7)

The first three mention only return and bind. These are called themonad laws, and

are well known to Haskell programmers: Monad instances in Haskell are generally

expected to satisfy them. The remaining four laws are specific to the nondetermin-

istic choice operator. Law (5.4) says that bind distributes over choice, and laws

(5.5)–(5.7) state that choice is associative, commutative and idempotent. The op-

erations of any powerdomain must satisfy all seven laws; we will refer to them

collectively as the powerdomain laws.

Haskell syntax for nondeterminism monads. In order to compare the same

computations evaluated in different nondeterminism monads, we will introduce



www.manaraa.com

154

a common syntax for nondeterministic computations using Haskell type classes.

Haskell already comes with a standard type class for monads, with return and

bind operations:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Recall that Haskell provides special syntax to make it easy to write monadic

code. The expression do {x <- m; k} is syntactic sugar for m >>= (\x -> k),

and do {a; b; c} is shorthand for do {a; do {b; c}}.

On top of the Monad class, we can define a subclass for monads with a binary

nondeterministic choice operator [PM00]:

class (Monad m) => ChoiceMonad m where
(|+|) :: m a -> m a -> m a

Now we can write Haskell code for computations that will run in any nondeter-

minism monad, using the do notation and the |+| operation. The types of such

computations will have the class context (ChoiceMonad m). Figure 5.1 shows the

seven powerdomain laws; these are simply Eqs. (5.1)–(5.7) translated into Haskell

syntax.

The Haskell list monad. Haskell programmers often use the list monad to

model nondeterministic computations; functions indicate multiple possible return

values by enumerating them in a list. In this case, the list append operator (++)

fills the role of nondeterministic choice.

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)



www.manaraa.com

155

1. return x >>= f = f x

2. xs >>= return = xs

3. (xs >>= f) >>= g = xs >>= (\x -> f x >>= g)

4. (xs |+| ys) >>= f = (xs >>= f) |+| (ys >>= f)

5. (xs |+| ys) |+| zs = xs |+| (ys |+| zs)

6. xs |+| ys = ys |+| xs

7. xs |+| xs = xs

Figure 5.1: The powerdomain laws in Haskell syntax

instance Monad [] where
return x = [x]
[] >>= f = []
(x : xs) >>= f = f x ++ (xs >>= f)

instance ChoiceMonad [] where
xs |+| ys = xs ++ ys

Compared to the set monad, the list monad has the great advantage of being

executable: If you code up a nondeterministic algorithm in the list monad, you can

just run it and see the results. The list monad also satisfies some equational laws:

The return and bind functions satisfy the monad laws (1–3), bind distributes over

choice (Law 4), and append is associative (Law 5).

However, the list monad does not satisfy the last two laws—the choice operator

for lists is neither commutative nor idempotent. This means that the list monad

is not abstract enough: There are many different lists that represent the same set

of possible return values. For example, consider a nondeterministic integer com-

putation f with three possible outcomes: a return value of 3, a return value of 5,

or divergence (i.e., a return value of ⊥ or undefined). The lists [3,5,undefined]

and [5,5,3,undefined,3] both represent the value of f equally well; both repre-

sent the set {3, 5,⊥}.



www.manaraa.com

156

The list monad also suffers from the opposite problem: In some circumstances,

it identifies computations that should be considered distinct. The difficulty is

caused by the append operation for lists, which does not behave well in the presence

of infinite output. The problem is that if xs is an infinite list, then xs ++ ys does

not depend on ys at all. If ys includes some possible outcomes that do not already

occur in xs, then they get thrown away.

This problem is demonstrated by the following recursive nondeterministic com-

putations. The possible results of comp1 include all the positive even integers, while

all integers greater than or equal to 2 are possible results of comp2.

comp1 :: (ChoiceMonad m) => m Int
comp1 = do {x <- return 0 |+| comp1; return (x+2)}

comp2 :: (ChoiceMonad m) => m Int
comp2 = do {x <- return 0 |+| comp2 |+| return 1; return (x+2)}

When interpreted in the list monad, comp1 returns the infinite list [2,4,6,8,...]

which correctly includes every possible return value of the computation. We should

expect comp2 to additionally include odd integers, but when we evaluate comp2 in

the list monad, we get exactly the same list as comp1—all of the odd integers are

missing. The reason is that because the denotation of comp2 is an infinite list, the

“return 1” branch is never reached.

The Haskell tree monad. Another possible nondeterminism monad for Haskell

is the binary tree, whose definition is shown below.

data Tree a = Leaf a | Node (Tree a) (Tree a)

instance Monad Tree where
return x = Leaf x
Leaf x >>= f = f x
Node l r >>= f = Node (l >>= f) (r >>= f)



www.manaraa.com

157

instance ChoiceMonad Tree where
l |+| r = Node l r

The binary tree monad solves the second problem that lists had: Unlike the list

append operator, the Node constructor never ignores either of its arguments, even

if the other is partial or infinite. When we interpret comp2 in the tree monad,

the resulting infinite tree contains all of its possible return values, including both

even and odd integers. Thus the tree monad can always distinguish any two

computations that have different sets of return values.

However, the problem of multiple representations remains; in fact this problem

is even worse than before. The list append operator was at least associative, but

because the choice operator for trees is a data constructor, it does not satisfy any

non-trivial equalities. The tree monad thus satisfies only the first four of the seven

powerdomain laws.

The set monad, revisited. We have seen that the set monad satisfies all seven

of the powerdomain laws, unlike the Haskell list or tree monads. However, com-

pared to those Haskell monads, the set monad has a major limitation: It is not

always possible to define recursive computations.

In an earlier chapter (§3.3) we saw how to express recursive definitions in terms

of a least fixed point combinator. To use a fixed point combinator on the set monad,

we need to impose an ordering on the powerset P(A) that makes it into a pointed

cpo. The subset ordering (⊆) on P(A) yields a pointed cpo, and we can show that

the bind and union operations are continuous under this ordering. But unless A

is a discrete cpo, the return operation {−} : A→ P(A) is not continuous, or even

monotone.

As a consequence, the set monad only works with some recursively-defined com-

putations. For example, consider the computation comp2 that we used previously.



www.manaraa.com

158

comp2 :: (ChoiceMonad m) => m Int
comp2 = do {x <- return 0 |+| comp2 |+| return 1; return (x+2)}

When interpreted in the set monad, comp2 denotes the least fixed point of the

function S 7→ ⋃
x∈({0}∪S∪{1}){x+ 2}. This function is continuous because S occurs

only within bind and union operations, which are themselves continuous. The fixed

point evaluates (correctly) to the infinite set {2, 3, 4, 5, . . . }.

Other definitions simply do not work with the least fixed point operator. For

example, consider the following program, which is a computation that itself returns

one of two further computations.

comp3 :: (ChoiceMonad m) => m (m Int)
comp3 = return (return 1) |+|

return (do {c <- comp3; x <- c; return (x+2)})

The intended meaning of comp3 is something like {{1}, {3, 5, 7, 9, . . . }}. But we

cannot model this definition with the fixed point operator, because the recursive

call to comp3 is inside the argument to return, which is not continuous in the

set monad. Indeed, if we start with undefined and evaluate successive unfoldings

of comp3, we get the sequence of sets S0 = {}, S1 = {{1}, {}}, S2 = {{1}, {3}},

S3 = {{1}, {3, 5}}, S4 = {{1}, {3, 5, 7}}, . . . which is not even a chain.

Another limitation of the set monad is that it does not work with recursive

datatype definitions. It is often useful to combine monads with datatypes, so

that the components of data structures can be computations with side-effects like

nondeterminism. For example, consider this monadic version of the Haskell list

datatype:

data MList m a = MNil | MCons a (m (MList m a))

The MList type makes sense when m is instantiated to lists or trees. But type

MList has no model when m is the set monad: If it did, then we would be able



www.manaraa.com

159

to construct an injective function into a set from its powerset, which is logically

unsound.

The set, list, and tree monads all fail to meet the requirements of a powerdo-

main: The list and tree monads fail to satisfy all of the powerdomain laws, and

the operations of the set monad fail to be continuous. In the next section, we will

see how to mathematically define type constructors that meet all the requirements

of a powerdomain. Defining recursive datatypes with powerdomains is beyond the

scope of this chapter, but will be covered later in Chapters 6 and 7.

5.3 POWERDOMAINS

A powerdomain is a type constructor with monadic return and bind operators, and

also a binary nondeterministic choice operator. These operations must satisfy all

seven powerdomain laws, and furthermore they must all be continuous functions.

Multiple varieties of powerdomains exist that meet all the requirements. The

three most common are known as the upper, lower, and convex powerdomains.

These are also respectively known as the Smyth, Hoare, and Plotkin powerdomains.

Each variety is also traditionally associated with a musical symbol: sharp (]) for

upper, flat ([) for lower, and natural (\) for the convex powerdomain [GS90].

Before we dive into the details of the various powerdomains, first let us intro-

duce some more notation. We will borrow the variable naming convention often

used for lists in Haskell: For values of powerdomain types we use names like xs,

ys, or zs, while for the underlying elements we use names like x, y, or z.

We will consistently use set-style notation when talking about powerdomains.

The singleton set syntax {−} denotes the monadic return operator, “unit”; and

the set union symbol (∪) denotes the nondeterministic choice operator, “plus”.

Also, we will use set enumerations like {x, y, z} as shorthand for {x} ∪ {y} ∪ {z}.

When necessary, we will indicate a specific powerdomain by using the appropriate

musical symbol as a superscript.



www.manaraa.com

160

5.3.1 Convex powerdomain

For a given element domain α, the convex powerdomain P\(α) is specified as the

free continuous domain-algebra1 over the constructors {−}\ and (∪\), modulo the

associativity, commutativity, and idempotence of (∪\). The convex powerdomain

is “universal” in a category-theoretical sense, in that there is a unique mapping

(preserving unit and plus) from the convex powerdomain into any other powerdo-

main.

Freeness means two things here. First, it says that the convex powerdomain

consists only of values that can be built up from applications of unit and plus (i.e.,

the convex powerdomain has “no junk”). Secondly, freeness also means that no

nontrivial equalities between terms should hold, except those required by the laws

(i.e., the convex powerdomain has “no confusion”).

In the context of complete partial orders, the “no junk” property has a slightly

different meaning than it does for ordinary inductive datatypes. As a cpo, the

convex powerdomain includes values built from a finite number of constructor

applications, plus additional values that result as limits of chains. Thus the convex

powerdomain has an induction rule like the following:

adm(P ) ∀x. P ({x}\) ∀xs ys. P (xs) −→ P (ys) −→ P (xs ∪\ ys)

∀xs. P (xs)
(5.8)

Admissibility of P means that for any chain of elements xi such that P (xi) holds

for all i, P must also hold for the limit ⊔
i xi. This side condition reflects the fact

that some values are only expressible as limits of chains—most induction rules in

HOLCF have a similar admissibility side condition. (HOLCF can automatically

prove admissibility for most inductive predicates used in practice.)

We still need to check that we can satisfy all of the powerdomain laws from Fig.

5.1. Laws 5–7, stating that (∪\) is associative, commutative, and idempotent, hold

1This construction is explained in Abramsky & Jung [AJ94, §6.1].



www.manaraa.com

161

by construction. We can use laws 1 and 4, which specify how bind interacts with

{−}\ and (∪\), respectively, as defining equations for the bind operator. Finally,

it is straightforward to prove the remaining monad laws (2 and 3) by induction.

Definition We say that x is a member of xs if {x} ∪ xs = xs.

If xs represents a nondeterministic computation, and x is one of the possible results,

then x must be a member of xs. However, the set of members is not necessarily

equal to the set of possible results. Not every conceivable set of results can be

precisely represented in the convex powerdomain, as the following theorem implies.

Theorem 5.3.1. Let xs be a value in a convex powerdomain. Then the set of

members of xs is convex-closed.

Proof. Let x and z be members of xs, and let y be any value between x and z,

such that x v y and y v z. We will show that y is a member of xs.

1. From y v z, we have {y}\ ∪\ xs v {z}\ ∪\ xs, by monotonicity.

Then because z is a member of xs, we have {z}\ ∪\ xs = xs.

Therefore {y}\ ∪\ xs v xs.

2. From x v y, we have {x}\ ∪\ xs v {y}\ ∪\ xs, by monotonicity.

Then because x is a member of xs, we have {x}\ ∪\ xs = xs.

Therefore xs v {y}\ ∪\ xs.

By antisymmetry we have {y}\ ∪\ xs = xs, thus y is a member of xs.

Theorem 5.3.1 says that the set of members of xs includes at least the convex

closure of the set of possible return values. In practice, this means that sometimes

nondeterministic computations with different sets of possible outcomes nevertheless

have the same denotation in the convex powerdomain.

Consider the domain of lifted booleans, which contains three values: True,

False, and ⊥. On top of this, we can construct the domain of pairs of booleans,



www.manaraa.com

162

which is ordered component-wise. Now imagine we have a nondeterministic com-

putation f that has exactly two possible return values: either (True,False) or

(⊥,⊥). Next, define a computation g that additionally has a third possible return

value of (True,⊥). Here is how we might specify f and g in Haskell:

f, g :: (ChoiceMonad m) => m (Bool, Bool)
f = return (True, False) |+| return (undefined, undefined)
g = return (True, undefined) |+| f

If we model these computations using the convex powerdomain monad, then the

denotation of f is {(True,False), (⊥,⊥)}\, and the denotation of g is {(True,⊥),

(True,False), (⊥,⊥)}\. But according to Theorem 5.3.1, these values are actually

equal—the convex powerdomain does not distinguish between the computations f

and g. In general, two computations will be identified if their respective sets of

possible results have the same convex closure.

By using the convex powerdomain instead of ordinary sets, we pay a price,

because the convex powerdomain cannot distinguish as many values. But we get

a significant bonus in exchange: Because powerdomains are cpos, and all the op-

erations are continuous, we can freely use powerdomain operations with general

recursion—this is not something that can be done with the ordinary set monad.

5.3.2 Upper powerdomain

The upper powerdomain P](α) can be defined in the same manner as the convex

powerdomain, except we require (∪]) to satisfy one extra law:

xs ∪] ys v xs (5.9)

(Note that due to commutativity, the statement xs∪] ys v ys is equivalent.) This

law makes the upper powerdomain into a semilattice, where xs ∪] ys is the meet,

or greatest lower bound, of xs and ys.



www.manaraa.com

163

Theorem 5.3.2. Let xs be a value in an upper powerdomain. Then the set of

members of xs is upward-closed.

Proof. Let x be a member of xs, and let y be any value such that x v y. We will

show that y is a member of xs.

1. From the symmetric form of Eq. (5.9), we have {y}] ∪] xs v xs.

2. From x v y, we have {x}] ∪] xs v {y}] ∪] xs, by monotonicity.

Then because x is a member of xs, we have {x}] ∪] xs = xs.

Therefore xs v {y}] ∪] xs.

By antisymmetry we have {y}] ∪] xs = xs, thus y is a member of xs.

A consequence of this theorem is that if ⊥ is a member of xs, then everything

is a member of xs. In other words, if a nondeterministic computation has any

possibility of returning ⊥, then according to the upper powerdomain semantics,

nothing else matters—it might as well always return ⊥. For this reason, the upper

powerdomain is good for reasoning about total correctness: if ⊥ is not a member

of xs, then you can be sure that xs denotes a computation that has no possibility

of nontermination.

5.3.3 Lower powerdomain

The lower powerdomain P[(α) can also be defined similarly, by adding a different

extra law:

xs v xs ∪[ ys (5.10)

This law makes the lower powerdomain into a semilattice, where xs ∪[ ys is the

join, or least upper bound, of xs and ys.

Theorem 5.3.3. Let xs be a value in a lower powerdomain. Then the set of

members of xs is downward-closed.



www.manaraa.com

164

Proof. Similar to the proof of Theorem 5.3.2.

An immediate consequence of this theorem is that in the lower powerdomain,

⊥ is a member of everything. Equivalently, {⊥}[ is an identity for the (∪[) op-

eration. In terms of nondeterministic computations, this means that the lower

powerdomain semantics ignores any nonterminating execution paths. In contrast

to the upper powerdomain, the lower powerdomain is better for reasoning about

partial correctness, where you want to verify that if a computation terminates,

then its result will satisfy some property.

5.3.4 Visualizing powerdomains

To help convey an intuition for the structure of the various kinds of powerdomains,

this section includes diagrams of the powerdomain orderings over a few different

element types. Fig. 5.2 shows all three powerdomains over a small flat domain, like

the lifted booleans. Fig. 5.3 extends this to a slightly larger flat domain. Fig. 5.4

extends this in a different way by adding a top value.

Looking at Figs. 5.2 and 5.3, some generalizations can be made about power-

domains over flat cpos. The ordering on the lower powerdomain of any flat cpo is

isomorphic to the subset ordering on the corresponding powerset. Also note that

the lower powerdomain always has a greatest element, which corresponds to the

set including all possible return values. In contrast, the upper powerdomain is

almost like the lower powerdomain flipped upside-down, except that the bottom

element stays at the bottom; the other singleton sets are maximal in this ordering.

For the lifted two-element type, note that the convex powerdomain has the

structure of the lower powerdomain embedded inside it, but with a new value

(excluding ⊥) added above each old value. The convex powerdomain of the lifted

three-element type is not shown (due to its size) but it is related to the lower

powerdomain in the same way.



www.manaraa.com

165

⊥

x y

{⊥}]

{x, y}]

{x}] {y}]

{⊥}[

{x}[

{x, y}[

{y}[

{⊥}\

{⊥, x}\ {⊥, y}\

{⊥, x, y}\{x}\ {y}\

{x, y}\

Figure 5.2: Lifted two-element type, with upper, lower, and convex powerdomains

⊥

x y z

{⊥}]

{x, y, z}]

{x, y}] {y, z}]{x, z}]

{x}] {y}] {z}]

{⊥}[

{x}[ {y}[ {z}[

{x, y}[ {y, z}[{x, z}[

{x, y, z}[

Figure 5.3: Lifted three-element type, with upper and lower powerdomains

The four-element lattice is interesting because due to its symmetry, it clearly

illustrates the duality between the upper and lower powerdomains. The lower

powerdomain is structured exactly like the upper powerdomain, but with the order

reversed.

5.4 POWERDOMAIN LIBRARY FEATURES

This section describes the user-visible aspects of the HOLCF powerdomain library.

The implementation defines three new type constructors, one for each of the three

powerdomain varieties. Each type has unit and plus constructors, and a monadic

bind operator. Each type also has map and join operators, defined in terms of unit

and bind in the same manner as Haskell’s liftM and join. The full list of types

and constants is shown in Fig. 5.5.

The functions convex to lower and convex to upper are the mappings guaranteed



www.manaraa.com

166

⊥

x y

>

{⊥}]

{x, y}]

{x}] {y}]

{>}]

{⊥}[

{x}[ {y}[

{x, y}[

{>}[

{⊥}\

{⊥, x}\ {⊥, y}\

{⊥, x, y}\

{x}\ {y}\{⊥,>}\ {x, y}\

{x, y,>}\

{x,>}\ {y,>}\

{>}\

Figure 5.4: Four-element lattice, with upper, lower, and convex powerdomains

to exist by the universal property of the convex powerdomain; they preserve unit

and plus. Note that instead of the full function space (⇒), all functions use the

HOLCF continuous function space type (→), indicating that they are continuous

functions.

For convenience, the library also provides set-style syntax for powerdomain op-

erations: We can write {x}] for upper unit·x, xs ∪] ys for upper plus·xs·ys, ⋃]x∈xs. t

for upper bind·xs·(Λ x. t), and so on for the other powerdomain types.

Along with the definitions of types and constants, the library provides a signif-

icant body of lemmas, many of which are declared to the simplifier. Each power-

domain type has an induction rule in terms of unit and plus, similar to Eq. (5.8).

Rules about injectivity, strictness, compactness, and ordering are provided for the

constructors. Rewrite rules are provided for the bind, map, and join functions ap-

plied to unit, plus, or ⊥. All of the powerdomain laws are also included as lemmas.

5.4.1 Type class constraints

The main axiomatic type classes in HOLCF are cpo (chain-complete partial orders)

and pcpo (pointed cpos). Unfortunately, the powerdomain constructions do not



www.manaraa.com

167

upper unit :: ’a → ’a upper pd
upper plus :: ’a upper pd → ’a upper pd → ’a upper pd
upper bind :: ’a upper pd → (’a → ’b upper pd) → ’b upper pd
upper map :: (’a → ’b) → ’a upper pd → ’b upper pd
upper join :: ’a upper pd upper pd → ’a upper pd

lower unit :: ’a → ’a lower pd
lower plus :: ’a lower pd → ’a lower pd → ’a lower pd
lower bind :: ’a lower pd → (’a → ’b lower pd) → ’b lower pd
lower map :: (’a → ’b) → ’a lower pd → ’b lower pd
lower join :: ’a lower pd lower pd → ’a lower pd

convex unit :: ’a → ’a convex pd
convex plus :: ’a convex pd → ’a convex pd → ’a convex pd
convex bind :: ’a convex pd → (’a → ’b convex pd) → ’b convex pd
convex map :: (’a → ’b) → ’a convex pd → ’b convex pd
convex join :: ’a convex pd convex pd → ’a convex pd

convex to upper :: ’a convex pd → ’a upper pd
convex to lower :: ’a convex pd → ’a lower pd

Figure 5.5: Powerdomain constants defined in HOLCF ’11



www.manaraa.com

168

work over arbitrary cpos; they need some additional structure. To formalize pow-

erdomains in HOLCF, it was necessary to add a new axiomatic class bifinite, which

is a subclass of pcpo. All of the functions defined in the HOLCF ’11 powerdomain

theories have a bifinite class constraint. The definition and relevant properties of

class bifinite will be discussed in Section 5.6.

As far as a user of the library is concerned, it does not matter how class bifinite

is defined; the important thing is that it should be preserved by all of type con-

structors that the user works with. HOLCF ’11 provides bifinite class instances for

all of its type constructors: continuous function space, cartesian product, strict

product, strict sum, lifted cpos, and all three varieties of powerdomains. Flat

domains built from countable HOL types are also instances of bifinite. The Do-

main package also generates instances of the bifinite class, when it is used in its

definitional mode (see Chapter 6).

5.4.2 Automation

To facilitate reasoning with powerdomains, the library provides various sets of

rewrite rules that are designed to work well together.

ACI normalization. Isabelle’s simplifier is set up to handle permutative rewrite

rules, which are equations like x + y = y + x whose right and left-hand-sides are

the same modulo renaming of variables [NPW02]. For any associative-commutative

(AC) operator, there is a set of three permutative rewrite rules that can convert

any expression built from the operator into a normal form (grouped to the right,

with terms sorted according to some syntactic term-ordering) [BN98]. Two of the

AC rewrites are simply the associativity and commutativity rules. The third is the

left-commutativity rule. For normalizing an associative-commutative-idempotent

(ACI) operator, we need a total of five rules: the three AC rewrites, plus the



www.manaraa.com

169

idempotency rule, and also (analogous to left-commutativity) left-idempotency.

(xs ∪ ys) ∪ zs = xs ∪ (ys ∪ zs)

ys ∪ xs = xs ∪ ys

ys ∪ (xs ∪ zs) = xs ∪ (ys ∪ zs) (5.11)

xs ∪ xs = xs

xs ∪ (xs ∪ ys) = xs ∪ ys

Permutative rewriting using the ACI rules results in a normal form where ex-

pressions are nested to the right, and the terms are sorted according to the syn-

tactic term ordering, with no exact duplicates. In HOLCF ’11, this normalization

can be accomplished for the convex powerdomains by invoking the simplifier with

simp add: convex plus aci. Similarly, upper plus aci and lower plus aci may be used

with upper and lower powerdomains, respectively.

Solving inequalities. A common subgoal in a proof might be to show that one

powerdomain expression is below another. For each variety of powerdomain, there

is a set of rewrite rules that can automatically reduce an inequality on powerdo-

mains down to inequalities on the underlying type.

{x}] v {y}] ⇐⇒ x v y

xs v (ys ∪] zs) ⇐⇒ (xs v ys) ∧ (xs v zs) (5.12)

(xs ∪] ys) v {z}] ⇐⇒ (xs v {z}]) ∨ (ys v {z}])

{x}[ v {y}[ ⇐⇒ x v y

(xs ∪[ ys) v zs ⇐⇒ (xs v zs) ∧ (ys v zs) (5.13)

{x}[ v (ys ∪[ zs) ⇐⇒ ({x}[ v ys) ∨ ({x}[ v zs)



www.manaraa.com

170

{x}\ v {y}\ ⇐⇒ x v y

{x}\ v (ys ∪\ zs) ⇐⇒ ({x}\ v ys) ∧ ({x}\ v zs) (5.14)

(xs ∪\ ys) v {z}\ ⇐⇒ (xs v {z}\) ∧ (ys v {z}\)

For the upper and lower powerdomains, each has a set of three rewrite rules

that covers all cases of comparisons. For example, simp add: upper pd below simps

will rewrite {x, y}] v {y, z}] into x v z ∨ y v z, using the rules in Eq. (5.12).

Similarly, simplification with lower pd below simps uses the rules in Eq. (5.13) to

simplify inequalities on lower powerdomains.

For the convex powerdomain, the three rules in Eq. (5.14) are incomplete: They

do not cover the case of (xs ∪\ ys) v (zs ∪\ ws). To handle this case, we will take

advantage of the coercions from the convex powerdomain to the upper and lower

powerdomains, along with the following ordering property:

lemma convex pd below iff:
"(xs v ys) ←→

(convex to upper·xs v convex to upper·ys ∧
convex to lower·xs v convex to lower·ys)"

The rule set convex pd below simps includes all rules from Eqs. (5.12)–(5.14), and

a suitably instantiated convex pd below iff to cover the missing case.

Using inequalities to solve non-trivial equalities. The ACI rewriting can

take care of many equalities between powerdomain expressions, but the inequality

rules can actually solve more. For example, using the assumptions x v y and

y v z, we will prove that {x, y, z}\ = {x, z}\. By antisymmetry, we can rewrite

this to the conjunction ({x, y, z}\ v {x, z}\) ∧ ({x, z}\ v {x, y, z}\). Next, we can

simplify with convex pd below simps, and this subgoal reduces to (y v x ∨ y v

z)∧ (x v y∨ z v y). Finally, this is easily discharged using the assumptions x v y

and y v z.



www.manaraa.com

171

5.5 IDEAL COMPLETION

In Chapter 2, we defined various basic HOLCF types as subsets of other cpos,

using the Cpodef package. Unfortunately, this is not possible for powerdomains.

In such cases where Cpodef is not applicable, we want to minimize the proof

effort for proving the completeness axioms and continuity of operations. One way

to accomplish this is to define a cpo using ideal completion.

The powerdomain construction used in HOLCF makes use of an alternative

representation of cpos, where we just consider the set of compact (i.e., finite)

values, rather than the whole cpo [AJ94, §2.2.6]. (Refer to Sec. 2.2.3 for the

HOLCF definition and properties of compactness.) For a certain class of cpos,

called algebraic cpos, every value can be expressed as the least upper bound of its

compact approximants. This means that in an algebraic cpo D the set of compact

elements K(D), together with the ordering on them, fully represents the entire

cpo. We say that K(D) forms a basis for the cpo D, and that the entire cpo D is

a completion of the basis.

To construct a new algebraic cpo by ideal completion, we can start by defining

its basis. The ordering on the basis can be any partial order, not necessarily a

complete partial order. The operations on the basis only need to be monotone,

not necessarily continuous. (This is helpful because monotonicity is generally much

easier to prove than continuity.) The ideal completion process extends the basis

with new infinite elements to give a cpo. Similarly, a process called continuous

extension lifts the monotone operations on the basis up to continuous functions on

the new cpo.

The ideal completion process is formalized as a library in HOLCF ’11; this

section will describe the formalization, and show how to define new cpo types with

it. Section 5.7 shows how it is used to define the powerdomain type constructors.

The process is general enough to be useful for other cpos besides powerdomains;



www.manaraa.com

172

Chapter 6 will show how it is used to construct a universal domain.

5.5.1 Preorders and ideals

A preorder is defined as a binary relation that is reflexive and transitive. Given a

basis with a preorder relation 〈B,�〉, we can construct an algebraic cpo by ideal

completion. This is done by considering the set of ideals over the basis:

Definition A set S ⊆ B is an ideal with respect to preorder relation (�) if it has

the following properties:

• S is nonempty: ∃x. x ∈ S

• S is downward-closed: ∀x y. x � y −→ y ∈ S −→ x ∈ S

• S is directed (i.e., has an upper bound for any pair of elements):

∀x y. x ∈ S −→ y ∈ S −→ (∃z. z ∈ S ∧ x � z ∧ y � z)

A principal ideal is an ideal of the form {y | y � x} for some x, written ↓x.

The set of all ideals over 〈B,�〉 is denoted by Idl(B); when ordered by subset

inclusion, Idl(B) forms an algebraic cpo. The compact elements of Idl(B) are

exactly those represented by principal ideals. The algebraicity of Idl(B) is manifest

in the following induction rule: For an admissible predicate P , if P holds for all

principal ideals, then it holds for all elements of Idl(B).

adm(P ) ∀x ∈ B. P (↓x)

∀y ∈ Idl(B). P (y)
(5.15)

(If the notion of admissibility is defined using directed sets, then Eq. (5.15) holds

for any preordered basis B. But if admissibility is defined using countable chains—

as it is in HOLCF—then we must require the basis B to be a countable set.)

Note that we do not require (�) to be antisymmetric. For x and y that are

equivalent (that is, both x � y and y � x) the principal ideals ↓ x and ↓ y are

equal. This means that the ideal completion construction automatically quotients

by the equivalence induced by (�).



www.manaraa.com

173

5.5.2 Formalizing ideal completion

Ideal completion is formalized using Isabelle’s locale mechanism [KWP99, Bal10].

A locale is like a named proof context: It fixes parameters and collects assump-

tions about them. Lemmas can be proved in a locale, where the assumptions of the

locale become extra implicit hypotheses. Likewise, constants can be defined in a

locale, with the locale parameters as extra implicit arguments. Locales can be in-

terpreted by instantiating the parameters with values that satisfy the assumptions,

generating specialized versions of all the constants and lemmas from the locale.

Locales are similar in some ways to axiomatic type classes. Both of these

mechanisms are used to formalize algebraic structures, which involve some number

of fixed operations and assumptions about them. However, each mechanism has

its own strengths and limitations, and some situations require one or the other.

The formalization of ideal completion relies on two features unique to locales:

First, while a type class may only mention a single type variable, locales may be

parameterized by any number of types. This feature is necessary because ideal

completion relates two types: a basis and a completed cpo. Second, locales allow

multiple interpretations at the same type—unlike type classes, which only allow

one instantiation per type. This feature allows us to define multiple preorders and

ideal completions with the same basis type.

Locale for preorders. The HOLCF ’11 ideal completion library defines two

locales, preorder and ideal completion; we will discuss the preorder locale first. The

preorder locale fixes a type ’a corresponding to the basis B, and a preorder relation

� on that type. We also define a predicate ideal within the locale.

locale preorder =
fixes r :: "’a::type ⇒ ’a ⇒ bool" (infix "�" 50)
assumes r refl: "x � x"
assumes r trans: "Jx � y; y � zK =⇒ x � z"



www.manaraa.com

174

definition (in preorder) ideal :: "’a set ⇒ bool"
where "ideal A ←→
(∃x. x ∈ A) ∧ (∀x∈A. ∀y∈A. ∃z∈A. x � z ∧ y � z) ∧
(∀x y. x � y −→ y ∈ A −→ x ∈ A)"

Within the preorder locale, we prove that principal ideals are indeed ideals. We

also prove that the union of a chain of ideals is itself an ideal—which shows that

the ideal completion is a cpo.

lemma (in preorder) ideal principal:
shows "ideal {x. x � z}"

lemma (in preorder) ideal UN:
fixes A :: "nat ⇒ ’a set"
assumes ideal A: "∧i. ideal (A i)"
assumes chain A: "∧i j. i ≤ j =⇒ A i ⊆ A j"
shows "ideal (⋃i. A i)"

Next we shall consider the steps required to define a new cpo in Isabelle using ideal

completion. The first step is to choose a type to use as a basis and define a preorder

relation on it. For example, as a basis we might use lists of natural numbers, with

a prefix ordering (@ is Isabelle’s list-append operator). After defining the relation

we proceed to interpret the preorder locale.

definition prefix :: "nat list ⇒ nat list ⇒ bool"
where "prefix xs ys = (∃zs. ys = xs @ zs)"

interpretation preord prefix: preorder prefix
by ...

The interpretation command requires a proof that prefix satisfies the assumptions

of the locale—in this case, reflexivity and transitivity. After we discharge the proof

obligations, the locale package generates copies of all constants and lemmas from

the preorder locale, instantiated with prefix in place of � and with the qualifier

“preord prefix” prepended to all the names.

The next step is to define a new type as the set of ideals over the basis, using

Typedef. (Recall that the open option serves merely to prevent Typedef from



www.manaraa.com

175

defining an unneeded set constant called inflist.) The non-emptiness obligation can

be discharged using lemma preord prefix.ideal principal.

typedef (open) inflist = "{S::nat list set. preord prefix.ideal S}"

After defining the type, we define the ordering (v) on type inflist in terms of the

subset ordering on type nat list set.

instantiation inflist :: below
begin
definition below inflist def: "(x v y) = (Rep inflist x ⊆ Rep inflist y)"
instance ..

end

We still need to prove that inflist is an instance of the po and cpo classes. For

this purpose, the ideal completion library provides a pair of lemmas that are very

similar to those used by the Cpodef package from Chapter 2 (§2.3). They have as-

sumptions about the type definition predicate, and their conclusions are OFCLASS

predicates.

lemma (in preorder) typedef ideal po:
fixes Rep :: "’b::below ⇒ ’a set’’ and Abs :: "’a set ⇒ ’b"
assumes type: "type definition Rep Abs {S. ideal S}"
assumes below: "∧x y. x v y ←→ Rep x ⊆ Rep y"
shows "OFCLASS(’b, po class)"

lemma (in preorder) typedef ideal cpo:
fixes Rep :: "’b::po ⇒ ’a set’’ and Abs :: "’a set ⇒ ’b"
assumes type: "type definition Rep Abs {S. ideal S}"
assumes below: "∧x y. x v y ←→ Rep x ⊆ Rep y"
shows "OFCLASS(’b, cpo class)"

The proof of typedef ideal po is straightforward. To prove typedef ideal cpo, we

show that Abs (⋃i. Rep (Y i)) gives the least upper bound for any chain Y.

Using lemma type definition inflist (provided by Typedef) and below inflist def

together with preord prefix.typedef ideal po and preord prefix.typedef ideal cpo, we

can prove the po and cpo class instances for inflist.



www.manaraa.com

176

Locale for ideal completions. Having defined a cpo with ideal completion, we

can now define an embedding from the basis type into the completion type, using

principal ideals.

definition principal inflist :: "nat list ⇒ inflist"
where "principal inflist x = Abs inflist {a. prefix a x}"

In order to prove generic theorems about this embedding, HOLCF defines another

locale on top of the preorder locale, called ideal completion. In addition to type

’a representing the basis B, the new locale fixes another type ’b corresponding to

Idl(B). It fixes two new functions: rep returns the representation of a value as

a set of basis elements, generalizing the function Rep inflist; and principal returns

values that correspond to principal ideals, generalizing principal inflist.

locale ideal completion = preorder +
fixes principal :: "’a::type ⇒ ’b::cpo"
fixes rep :: "’b::cpo ⇒ ’a::type set"
assumes ideal rep: "∧x. ideal (rep x)"
assumes rep lub: "∧Y. chain Y =⇒ rep (⊔i. Y i) = (⋃i. rep (Y i))"
assumes rep principal: "∧a. rep (principal a) = {b. b � a}"
assumes belowI: "∧x y. rep x ⊆ rep y =⇒ x v y"
assumes countable: "∃f::’a ⇒ nat. inj f"

The assumptions of the ideal completion locale are designed to be easily satisfied by

types like inflist that are defined by ideal completion over a countable basis type.

To assist with ideal completion locale interpretation proofs, the library provides the

following lemma:

lemma (in preorder) typedef ideal completion:
fixes Rep :: "’b::cpo ⇒ ’a set" and Abs :: "’a set ⇒ ’b"
assumes type: "type definition Rep Abs {S. ideal S}"
assumes below: "∧x y. x v y ←→ Rep x ⊆ Rep y"
assumes principal: "∧a. principal a = Abs {b. b � a}"
assumes countable: "∃f::’a ⇒ nat. inj f"
shows "ideal completion r principal Rep"



www.manaraa.com

177

Within the ideal completion locale, we start by proving a few simple lemmas about

principal: The ordering between principal values reflects the basis ordering, and

every principal value is compact.

lemma (in ideal completion) principal below iff [simp]:
"principal a v principal b ←→ a � b"

lemma (in ideal completion) compact principal [simp]:
"compact (principal a)"

Perhaps the most important theorem in the ideal completion locale, however, is the

principal induction rule given in Eq. (5.15). In order to help prove it, we must start

with a lemma related to the countability of the basis: Any value in the complete

cpo can be expressed as the least upper bound of a chain of principal values.

lemma (in ideal completion) obtain principal chain:
"∃Y. (∀i. Y i � Y (Suc i)) ∧ x = (⊔i. principal (Y i))"

The proof proceeds by explicitly constructing such a chain, following a technique

from the proof of Proposition 2.2.14 in Abramsky and Jung [AJ94]. Let (bn)n∈ω be

an enumeration of the basis B, and let x be a value in the completion represented

by the ideal S. Then we can construct a sequence of basis values (si)i∈ω as follows.

Let s0 be the first bn such that bn ∈ S. Then for every i ∈ ω we define ti as the first

bn such that bn ∈ S and bn 6� si. Then we inductively define si+1 as the first bn
in S above both si and ti. It can be shown that the sequence si yields the desired

least upper bound.

Using lemma obtain principal chain, the principal induction rule follows directly.

lemma (in ideal completion) principal induct:
"Jadm P; ∧a. P (principal a)K =⇒ P x"

As we will see later in Sec. 5.7, induction over principal values is the primary

way to transfer properties about the basis type up to the completed cpo. Lemma

principal induct is used dozens of times in the proof scripts of the HOLCF ’11

powerdomain theories.



www.manaraa.com

178

5.5.3 Continuous extensions of functions

A continuous function on an algebraic cpo is completely determined by its action

on compact elements. This suggests a method for defining continuous functions

over ideal completions: First, define a function from the basis B to a cpo C such

that f is monotone, i.e., x � y implies f(x) v f(y). Then there exists a unique

function f̂ : Idl(B) → C that agrees with f on principal ideals, i.e., for all x,

f̂(↓x) = f(x). We say that f̂ is the continuous extension of f .

The continuous extension is defined by mapping the function f over the input

ideal, and then taking the least upper bound of the resulting directed set: f̂(S) =⊔
x∈S f(x). Generally, the result type C would need to be a directed-complete

partial order2 to ensure that this least upper bound exists. However, if the basis

B is countable, then it is possible to find a chain in S that yields the same least

upper bound as S. This means that C can be any chain-complete partial order.

5.5.4 Formalizing continuous extensions

Within the ideal completion locale we define a function extension, which takes a

monotone function f as an argument, and returns the continuous extension f̂ .

definition (in ideal completion) extension :: "(’a ⇒ ’c::cpo) ⇒ (’b → ’c)"
where "extension f = (Λ x. lub (image f (rep x)))"

The definition of extension uses two features that are only well-defined if certain

conditions are met: First, the function lub requires that its argument actually have

a least upper bound. Second, the continuous function abstraction requires that the

body be continuous in x. Both of these properties rely on the monotonicity of f.

To prove that image f (rep x) has a least upper bound, we use the lemma

obtain principal chain to get a chain Y :: nat ⇒ ’a of basis elements such that x =

2Directed-completeness means that every directed set has a least upper bound. This is a
stronger condition than chain-completeness, which is used in the HOLCF formalization of cpos.



www.manaraa.com

179

(⊔i. principal (Y i)). Then we show that (⊔i. f (Y i)) is the desired least upper

bound. The continuity of the abstraction then follows from rep lub combined

with properties of least upper bounds. Finally, we can establish the behavior

of extension on principal ideals, using the fact that f a is a least upper bound of

the set image f (rep (principal a)).

lemma extension principal:
assumes f mono: "∧a b. a � b =⇒ f a v f b"
shows "extension f·(principal a) = f a"

To prove a property about a function defined as a continuous extension, the general

approach is to use principal induction (lemma principal induct) to reduce the general

subgoal to one about principal values; then lemma extension principal can be used

to unfold the definition.

5.6 BIFINITE CPOS

The construction used here for powerdomains only works with element types that

are algebraic cpos, having bases of compact elements. As was mentioned earlier

in Sec. 5.4.1, the type classes cpo and pcpo are not sufficient to meet this require-

ment. Instead, the powerdomain libraries are based on the bifinite class, which is

a subclass of pcpo.

Definition A continuous function f : D → D is a deflation if it is idempotent

and below the identity function: f ◦ f = f v IdD. A finite deflation is a deflation

whose image is a finite set.

Definition Let D be a cpo, and letM be the set of finite deflations over D. Then

we say that D is bifinite ifM is countable and directed with ⊔M = IdD.

Given a deflation f over a cpo D, the image of f identifies a sub-cpo of D.

Similarly, a finite deflation over D identifies a finite poset that is a subset of



www.manaraa.com

180

K(D). Intuitively then, a bifinite cpo is one that can be expressed as the limit (in

an appropriate sense) of a countable collection of finite posets.

A few notes on terminology: The definitions of “deflation” and “finite deflation”

used here were taken from Gunter [Gun85, §3.1]. Deflations are also commonly

known as “projections” or sometimes “kernel operators” [AJ94]. Abramsky and

Jung also use the term “idempotent deflation” to refer to finite deflations [AJ94].

We include a countability requirement in the definition of bifiniteness, following

Gunter and Scott [GS90]. Some authors [AJ94] relax this requirement, allow-

ing bifinite domains of arbitrary cardinality, and using the qualifiers “countably

based” or “ω-bifinite” as required. Bifinite domains were originally defined by

Plotkin as limits of expanding sequences of finite posets, who used the name “SFP

domains” [Plo76].

Many categories of cpos can be found in the domain theory literature [AC98,

GS90, AJ94]. Of all the possibilities, the bifinites were chosen because they meet

the following criteria:

• All bifinite cpos are algebraic: Every bifinite type has a basis of compact

elements, given by the union of the ranges of the finite deflations.

• In bifinite cpos, every directed set contains a countable chain with the same

limit. This means that for bifinite cpos, the notions of directed-continuity

and chain-continuity coincide. This is important for fitting the ideal com-

pletion construction (which uses directed sets) into HOLCF (which defines

everything with chains).

• The class of bifinite cpos is closed under all type constructors used in HOLCF,

including all three powerdomains.

• A universal bifinite domain exists, which can be used to represent general

recursive datatypes (see Chapter 6).



www.manaraa.com

181

The requirement for algebraicity rules out the chain-complete cpos (classes cpo and

pcpo). The category of countably-based algebraic cpos meets the first two criteria,

but it fails the third: The continuous function space between two arbitrary alge-

braic cpos is not necessarily algebraic. The category of bounded-complete domains

(also known as “Scott domains”) meets nearly all of the criteria, including having

a universal domain—except that bounded-completeness fails to be preserved by

the convex powerdomain [GS90].

5.6.1 Type class for bifinite cpos

Next we will see how the class bifinite is defined in HOLCF ’11. We start by defining

deflation and finite deflation. Defining them as locales makes it more convenient to

prove numerous simple lemmas about deflations and finite deflations.

locale deflation =
fixes d :: "’a → ’a"
assumes idem: "∧x. d·(d·x) = d·x"
assumes below: "∧x. d·x v x"

locale finite deflation = deflation +
assumes finite fixes: "finite {x. d·x = x}"

Note that finite deflation is defined using the set of fixed points of d, rather than

the image of d; it is provable within the deflation locale that these sets are equal.

This formulation makes it slightly easier to prove that particular functions are

finite deflations.

For class bifinite, instead of asserting directly that the collection of all finite

deflations is countable and directed, we assume the existence of a countable chain

of them whose least upper bound is the identity. Defining bifiniteness this way in

terms of approx chain is convenient because we will be able to reuse it later: For the

universal domain presented in Chapter 6, embedding functions will be constructed

within the approx chain locale.



www.manaraa.com

182

locale approx chain =
fixes approx :: "nat ⇒ ’a → ’a"
assumes chain approx: "chain (λi. approx i)"
assumes lub approx: "(⊔i. approx i) = ID"
assumes finite deflation approx: "∧i. finite deflation (approx i)"

class bifinite = pcpo +
assumes bifinite: "∃a. approx chain a"

To prove instances of the bifinite class, we rely on a collection of map functions for

each type constructor. Map functions were discussed previously in Chapter 4, in

the context of the Domain package (Fig. 4.1 gives a complete list). We repeat the

definition of the map function for the product type:

definition prod map :: "(’a → ’b) → (’c → ’d) → ’a × ’c → ’b × ’d"
where "prod map = (Λ f g (x, y). (f·x, g·y))"

The prod map function applied to identity functions yields the identity function on

pairs. We can also show that prod map applied to finite deflations yields a finite

deflation.

lemma prod map ID:
shows "prod map·ID·ID = ID"

lemma finite deflation prod map:
assumes "finite deflation d1" and "finite deflation d2"
shows "finite deflation (prod map·d1·d2)"

A consequence of these properties is that prod map takes approx-chains to approx-

chains, which is sufficient to show that the product type constructor preserves

bifiniteness. Similarly, other map functions are used to prove bifinite class instances

for other basic HOLCF types (strict sums and products, continuous function space,

and lifted cpos). Flat lifted HOL types like nat lift are bifinite only if they are

countable.



www.manaraa.com

183

5.6.2 Bifinite types as ideal completions

Every bifinite cpo D has a countable basis K(D) of compact elements, of which D

is isomorphic to the ideal completion: D ∼= Idl(K(D)). Accordingly, we can create

a locale interpretation that lets us treat types in class bifinite as ideal completions.

We define a partial order ’a compact basis isomorphic to the set of compact ele-

ments of type ’a. The type ’a compact basis will serve as the basis K(D) while the

original type ’a serves as Idl(K(D)). The Rep compact basis function from the type

definition fills the role of the function principal from the ideal completion locale. We

define a function approximants to act as the rep function.

typedef (open) ’a compact basis = "{x::(’a::bifinite). compact x}"

definition approximants :: "’a::bifinite ⇒ ’a compact basis set"
where "approximants x = {a. Rep compact basis a v x}"

interpretation compact basis:
ideal completion below Rep compact basis approximants

The proof of the locale interpretation is mostly straightforward; the trickiest part

is proving that approximants x is a directed set. For the proof, we apply rule

bifinite to obtain a chain of approx functions, and use a lemma proved within the

approx chain locale: A value is compact if and only if it is in the range of one

of the approx functions. To show directedness of approximants x, let a and b be

compact values below x. Then there exist i and j such that approx i·a = a and

approx j·b = b. Finally, with a bit more work we can show that approx (max i j)·x

is a compact value below x and above a and b.

Countability of the type ’a compact basis also derives from the compactness

rule. The set of compact values of type ’a is the union of the images of approx

functions. As a countable union of finite sets, it is also countable.3

3The proof of this fact requires the axiom of choice. Reliance on AC could be avoided by
making an explicit enumeration of the basis part of the bifinite class, but it is not clear that it
would be worth the trouble to do so.



www.manaraa.com

184

5.7 CONSTRUCTION OF POWERDOMAINS

All three of the powerdomains in the library are defined by ideal completion, follow-

ing the construction given by Gunter and Scott [GS90, §5.2]. Each powerdomain

uses the same basis type. If the algebraic cpo D is the element type, then the

powerdomain basis consists of nonempty, finite sets of compact elements of D.

Formally, we would write this as P∗f (K(D)), where K(D) is the compact basis of

D, and P∗f (S) denotes the set of finite, non-empty subsets of set S.

The lower, upper, and convex powerdomains all use the same basis, but each

uses a different preorder relation:

a �[ b ⇐⇒ ∀x ∈ a. ∃y ∈ b. x v y

a �] b ⇐⇒ ∀y ∈ b. ∃x ∈ a. x v y (5.16)

a �\ b ⇐⇒ a �[ b ∧ a �] b

Note that these definitions are consistent with the characteristic ordering properties

of powerdomains: We have a∪ b �] a in accordance with Eq. (5.9), and a �[ a∪ b

in accordance with Eq. (5.10).

The various powerdomain operations, including unit, plus, and bind, are all

defined as continuous extensions: In particular, the unit operation is the extension

of the singleton function {−} : K(D) → P∗f (K(D)), and plus is the extension

of the union operation on P∗f (K(D)). Properties about all the functions can be

derived using principal induction, as in Eq. (5.15).

The remainder of this section shows how these constructions are formalized in

HOLCF ’11. We start with the powerdomain basis type (§5.7.1), and then define

powerdomain types by ideal completion using the various preorders (§5.7.2). Next

we define the constructors unit and plus by continuous extension (§5.7.3) and prove

properties about them by induction (§5.7.4). Finally we define bind, map, and join

functions and prove bifiniteness of the powerdomain types (§5.7.5).



www.manaraa.com

185

5.7.1 Powerdomain basis type

To use as a basis for the various powerdomains, the library defines a type ’a pd basis,

which consists of nonempty, finite sets of elements of type ’a compact basis. The

constructor functions PDUnit and PDPlus build singleton sets and unions, respec-

tively.

typedef ’a pd basis = "{S::’a compact basis set. finite S ∧ S 6= {}}"

definition PDUnit :: "’a compact basis ⇒ ’a pd basis"
where "PDUnit x = Abs pd basis {x}"

definition PDPlus :: "’a pd basis ⇒ ’a pd basis ⇒ ’a pd basis"
where "PDPlus t u = Abs pd basis (Rep pd basis t ∪ Rep pd basis u)"

Using the induction principle for finite sets from Isabelle’s standard library, we

derive an induction rule for the ’a pd basis type, expressed in terms of the con-

structors.

lemma pd basis induct:
assumes PDUnit: "∧a. P (PDUnit a)"
assumes PDPlus: "∧t u. JP t; P uK =⇒ P (PDPlus t u)"
shows "P x"

For defining operations like map, bind, and join, we also need the following fold

operation on type ’a pd basis. Its definition uses a finite-set fold operator fold1

provided by the standard Isabelle libraries [NP05]. Given an argument built from

combinations of PDUnit and PDPlus, the function fold pd g f replaces PDUnit with

g and PDPlus with f—but it is only well-defined if f is associative, commutative,

and idempotent.

definition fold pd ::
"(’a compact basis ⇒ ’b) ⇒ (’b ⇒ ’b ⇒ ’b) ⇒ ’a pd basis ⇒ ’b"

where "fold pd g f t = fold1 f (image g (Rep pd basis t))"

Finally, using the countability of type ’a compact basis, we prove that ’a pd basis

is a countable type as well. The proof uses an isomorphism between the natural



www.manaraa.com

186

numbers N and finite sets of naturals Pf (N), which is provided in the standard

Isabelle libraries.

5.7.2 Defining powerdomain types with ideal completion

We will consider the definition of the upper powerdomain in some detail; the

definitions of the other two powerdomain types are very similar. Having already

defined the basis type, the next step is to define the preorder relation.

definition upper le :: "’a pd basis ⇒ ’a pd basis ⇒ bool" (infix "≤]" 50)
where "u ≤] v = (∀y ∈ Rep pd basis v. ∃x ∈ Rep pd basis u. x v y)"

interpretation upper le: preorder upper le

We follow the same process shown above in Sec. 5.5.2 for inflist to define the type,

instantiate po and cpo classes, and finally interpret the ideal completion locale. The

complete code for this process is shown in Fig. 5.6.

After proving the class instances and locale interpretations, we get to our first

interesting proof: We can prove that type ’a upper pd is pointed.

lemma upper pd minimal:
"upper principal (PDUnit (Abs compact basis ⊥)) v ys"

The proof is by induction on ys using rule upper pd.principal induct, which is one

of the theorems generated by the locale interpretation.

5.7.3 Defining constructor functions by continuous extension

The extension operators are used to define the powerdomain constructors upper unit

and upper plus in terms of the singleton and union operations on the pd basis type.

The function upper unit has an argument type of ’a, which uses ’a compact basis

as its basis type. Accordingly, we must use the extension combinator from the

compact basis locale interpretation to define it.



www.manaraa.com

187

typedef (open) ’a upper pd = "{S::’a pd basis set. upper le.ideal S}"
by (auto intro: upper le.ideal principal)

instantiation upper pd :: (bifinite) below
begin
definition "(x v y) = (Rep upper pd x ⊆ Rep upper pd y)"
instance ..

end

instance upper pd :: (bifinite) po
using type definition upper pd below upper pd def
by (rule upper le.typedef ideal po)

instance upper pd :: (bifinite) cpo
using type definition upper pd below upper pd def
by (rule upper le.typedef ideal cpo)

definition upper principal :: "’a pd basis ⇒ ’a upper pd"
where "upper principal t = Abs upper pd {u. u ≤] t}"

interpretation upper pd: ideal completion upper le upper principal Rep upper pd
using type definition upper pd below upper pd def
using upper principal def pd basis countable
by (rule upper le.typedef ideal completion)

Figure 5.6: Defining the upper powerdomain type by ideal completion



www.manaraa.com

188

definition upper unit :: "’a → ’a upper pd"
where "upper unit =
compact basis.extension (λa. upper principal (PDUnit a))"

The next step is to use the theorem compact basis.extension principal to establish

how upper unit acts on principal inputs. This requires a proof that the argument to

compact basis.extension is monotone. Monotonicity is easy to show, because a v b

implies PDUnit a ≤] PDUnit b, which in turn implies upper principal (PDUnit a) v

upper principal (PDUnit b).

lemma upper unit Rep compact basis [simp]:
"upper unit·(Rep compact basis a) = upper principal (PDUnit a)"

Unlike upper unit, the operator upper plus takes arguments of type ’a upper pd, so

we must define it using the extension combinator from the upper pd locale. Because

it takes two arguments, we nest two applications of upper pd.extension.

definition upper plus :: "’a upper pd → ’a upper pd → ’a upper pd"
where "upper plus = upper pd.extension (λt.
upper pd.extension (λu. upper principal (PDPlus t u)))"

Again, we prove how the constructor acts on principal inputs by showing mono-

tonicity; here we must prove that the definition is monotone in both arguments.

The proof obligation reduces to showing that PDPlus is monotone with respect to

≤], which is easily proved by unfolding the definitions.

lemma upper plus principal [simp]:
"upper plus·(upper principal t)·(upper principal u) =
upper principal (PDPlus t u)"

As mentioned earlier in Sec. 5.4, we introduce syntax for the constructors: {x}]

for upper unit·x and xs ∪] ys for upper plus·xs·ys.



www.manaraa.com

189

lemma upper plus assoc: "(xs ∪] ys) ∪] zs = xs ∪] (ys ∪] zs)"

lemma upper plus commute: "xs ∪] ys = ys ∪] xs"

lemma upper plus absorb: "xs ∪] xs = xs"

lemma upper plus below1: "xs ∪] ys v xs"

lemma upper pd induct:
assumes P: "adm P"
assumes unit: "∧x. P {x}]"
assumes plus: "∧xs ys. JP xs; P ysK =⇒ P (xs ∪] ys)"
shows "P (xs::’a upper pd)"

Figure 5.7: Powerdomain lemmas with simple proofs by principal induction

5.7.4 Proving properties about the constructors

After defining the constructor functions upper unit and upper plus, we must prove

some properties about them. For example, we need to show that upper plus satis-

fies the powerdomain laws of associativity, commutativity, and idempotence. We

must also prove the characteristic ordering property of upper powerdomains from

Eq. (5.9). These lemmas are all listed in Fig. 5.7, and they all have similar

proofs. Because each proposition is admissible in each variable (see Fig. 2.3 from

Sec. 2.2.3), we can perform principal induction with rule upper pd.principal induct

to reduce them to propositions about elements of the basis: After applying in-

duction and simplifying, (∪]) is replaced by PDPlus, and (v) by (≤]). The corre-

sponding properties on the basis are then easy to show by unfolding the relevant

definitions.

The proof of the induction rule upper pd induct starts the same way, with princi-

pal induction. This reduces the goal P xs to one of the form P (upper principal t) for

arbitrary t. The proof then proceeds by induction on t using rule pd basis induct.



www.manaraa.com

190

lemma upper unit below iff [simp]:
"{x}] v {y}] ←→ x v y"

lemma upper plus below unit iff [simp]:
"xs ∪] ys v {z}] ←→ xs v {z}] ∨ ys v {z}]"

Figure 5.8: Powerdomain lemmas with tricky proofs by principal induction

Other properties, such as the rewrite rules for comparisons from Eqs. (5.12)–

(5.14), are a bit trickier to prove. Because they contain implications, which do not

preserve admissibility, the principal induction rules are not so straightforward to

apply. For example, consider the lemma upper unit below iff from Fig. 5.8. One

direction of the equivalence can be solved by monotonicity, but this still leaves

the implication {x}] v {y}] −→ x v y, which is equivalent to {x}] 6v {y}] ∨ x v y.

Due to the negated comparison, this predicate is admissible in x but not in y. To

complete the proof we will need to perform induction on both variables, but at

first it seems we are stuck.

The solution involves using the admissibility rules for compactness from Chap-

ter 2, specifically lemma adm compact not below from Fig. 2.4. Because the propo-

sition is admissible in x, we do principal induction on x first; this replaces each

occurrence of x in the goal with Rep compact basis a, for an arbitrary a. The new

subgoal now looks like this:

{Rep compact basis a}] v {y}] −→ Rep compact basis a v y

The original proposition with x was not admissible in y, but the new proposition is,

because {Rep compact basis a}] is compact (it equals upper principal (PDUnit a)).

This means we can proceed with a second principal induction on y; the remainder

of the proof is easy.



www.manaraa.com

191

We use a similar proof strategy for lemma upper plus below unit iff. The propo-

sition of that lemma is admissible in xs and ys, but not in z. But after doing princi-

pal induction on both xs and ys, replacing them respectively with upper principal t

and upper principal u, we can use lemma adm compact not below to show that

the remaining subgoal is admissible in z. Most of the lemmas corresponding to

Eqs. (5.12)–(5.14) use a similar proof, as does the convex pd below iff lemma, which

also has an if-and-only-if form.

5.7.5 Defining functor and monad operations

The upper bind, upper map, and upper join operations remain to be defined. Instead

of defining each of these separately using continuous extension, it will be easiest

to simply define the map and join operations in terms of upper bind. For the

bind operation, we start by defining a function upper bind basis that specifies how

upper bind should behave on compact inputs.

definition upper bind basis ::
"’a pd basis ⇒ (’a → ’b upper pd) → ’b upper pd"

where "upper bind basis =
fold pd (λa. Λ f. f·(Rep compact basis a)) (λx y. Λ f. x·f ∪] y·f)"

We must show that the second argument to fold pd is associative, commutative,

and idempotent before we can derive the characteristic equations. These conditions

follow directly from the lemmas shown in Fig. 5.7.

lemma upper bind basis simps:
"upper bind basis (PDUnit a) = (Λ f. f·(Rep compact basis a))"
"upper bind basis (PDPlus t u) =
(Λ f. upper bind basis t·f ∪] upper bind basis u·f)"

Next, upper bind is defined as the continuous extension of upper bind basis. The

proof that upper bind basis is monotonic, i.e. that t ≤] u implies upper bind basis t

v upper bind basis u, proceeds by induction on u, and relies on upper plus below1

from Fig. 5.7.



www.manaraa.com

192

definition upper bind :: "’a upper pd → (’a → ’b upper pd) → ’b upper pd"
where "upper bind = upper pd.extension upper bind basis"

After deriving how upper bind behaves on principal inputs, it is easy to prove how

it acts on the upper unit and upper plus constructors, using principal induction on

the arguments.

lemma upper bind unit [simp]:
"upper bind·{x}]·f = f·x"

lemma upper bind plus [simp]:
"upper bind·(xs ∪] ys)·f = upper bind·xs·f ∪] upper bind·ys·f"

Next we can define upper map in terms of upper bind and upper unit. Many prop-

erties of upper map can be derived from related lemmas about upper bind simply

by unfolding the definition.

definition upper map :: "(’a → ’b) → ’a upper pd → ’b upper pd"
where "upper map = (Λ f xs. upper bind·xs·(Λ x. {f·x}]))"

We will define upper join similarly in terms of upper bind, but there is something

else we must do first. Note that the argument type of upper join is a powerdo-

main of powerdomains. But the type constructor upper pd is only well-defined

when applied to types in the bifinite class. So we must prove the bifiniteness of

type ’a upper pd before we can proceed. To prove that the upper powerdomain is

bifinite, we use the same method as with other HOLCF types: We use the map

function for the type constructor, and show that it preserves finite deflations (and

thus, that it also preserves approx-chains).

lemma finite deflation upper map:
assumes "finite deflation d" shows "finite deflation (upper map·d)"

Proving that upper map preserves deflations is relatively easy; each property of de-

flations can be proven by induction with rule upper pd induct. Proving finiteness of

the image is a bit harder. The image of d is a finite set of elements of type ’a, which



www.manaraa.com

193

are all compact. This translates to a finite set of values of type ’a compact basis.

Its powerset then determines a finite subset of ’a pd basis; in turn, this can be

embedded into a finite subset of ’a upper pd, which can be shown to contain the

image of upper map·d.

After establishing the bifiniteness of the upper powerdomain, we can finally

define the join operator.

definition upper join :: "’a upper pd upper pd → ’a upper pd"
where "upper join = (Λ xss. upper bind·xss·(Λ xs. xs))"

All of the theorems about map and join, including the monad laws, are proven

by induction on their arguments using upper pd induct, and simplifying with their

definitions.

5.8 DISCUSSION

An earlier version of the work presented in this chapter was published in [Huf08].

The current version includes various simplifications and improvements compared

to the earlier work. In the earlier version, the bifinite type class fixed a specific

chain of approx functions, rather than just asserting the existence of one. At the

time, this was necessary because the proofs of the “tricky” lemmas in Fig. 5.8 used

approx functions. The new proofs take full advantage of the latest automation for

admissibility proofs involving compactness (see Sec. 2.2.3), and are much simpler.

The ideal completion locale was also more complicated in the earlier version of

the library. Instead of using a countability requirement, it fixed a chain of idem-

potent take functions over the basis type, corresponding to the chain of approx

functions on the completed cpo. With the old version, the ideal completion li-

brary was very firmly tied to the definition of the bifinite class. In contrast, the

new version of the library is more flexible, and could conceivably be used with

any countably-based algebraic cpo. Using ideal completion with unpointed types



www.manaraa.com

194

is planned for future work; this would allow, for example, powerdomains with

unpointed element types like the discrete natural numbers.

Relevant uses of powerdomains include modeling interleaved and parallel com-

putation. Papaspyrou uses the convex powerdomain, together with the state and

resumption monad transformers, to model impure languages with unspecified eval-

uation order [PM00]. Along similar lines, Thiemann used a type of state monad

built on top of powerdomains to reason about concurrent computations [Thi95].

Some of the monad transformers used in these works, specifically the resumption

monad transformer, have been studied in previous joint work with Matthews and

White [HMW05]. These ideas will be developed further in the case study in Chap-

ter 7, which examines a recursive monadic datatype involving powerdomains.

Another potential application of powerdomains is for modeling exceptions: Pey-

ton Jones, et al. [PJRH+99] use an upper powerdomain to model the meanings of

datatypes in a functional language with imprecise run-time exceptions. Even if

the execution of a program is actually deterministic in fact, using a less-precise se-

mantics based on powerdomains makes it possible to use a wider range of program

optimizations. A transformed program might yield a different run-time exception

when executed, yet the transformed program can still be proven to be equivalent

in the powerdomain model.

The future work section of [Huf08] noted that the powerdomain library still

required integration with the domain package. In HOLCF ’11 this integration

is complete: In Chapter 6 we will see how the new domain package generates

instances of the bifinite class, and how powerdomains are now supported in recursive

definitions with the Domain package.



www.manaraa.com

195

Chapter 6

THE UNIVERSAL DOMAIN AND DEFINITIONAL DOMAIN PACKAGE

6.1 INTRODUCTION

In Chapters 2 and 5 we have seen how to construct a wide variety of type con-

structors for HOLCF, including strict sums and products, lifted cpos, continuous

function spaces, and three kinds of powerdomains. Additionally, the Domain

package described in Chapter 4 provides automation for defining recursive cpo

types, but there are gaps in its implementation: In particular, each new type is

not actually defined; rather, it is axiomatized instead. Generating axioms for each

definition leads to serious concerns about soundness.

This chapter describes the formalization of a universal domain that is suitable

for modeling general recursive datatypes. The construction is purely definitional,

introducing no new axioms. Defining recursive types in terms of this universal

domain allows the new Domain package to derive strong reasoning principles,

with soundness ensured by construction.

A universal domain is a single cpo type that contains a large class of other

cpos as subsets. The universal domain presented in this chapter is a universal

bifinite domain, meaning that any bifinite cpo can be represented within it. (See

Chapter 5 for a discussion of bifinite cpos.) More specifically, it is a deflation-

universal bifinite domain, because each bifinite cpo is represented as a deflation,

and type constructors are represented as continuous functions on deflations. The

deflation model of recursive datatypes is convenient to work with, because recur-

sive datatypes can be defined with the same least fixed point machinery used for



www.manaraa.com

196

defining recursive functions.

Constructions of a universal bifinite domain exist in the domain theory litera-

ture [Gun87, GS90]. This chapter will show how to adapt one such construction

so that it can be formalized in a theorem prover like Isabelle. The formalization

uses the ideal completion process described previously in Chapter 5 (§5.5).

Contributions. The original contributions presented in this chapter are:

• A new construction of a universal domain that can represent a wide variety of

types, including sums, products, continuous function space, powerdomains,

and recursive types built from these. Universal domain elements are de-

fined in terms of sets of natural numbers, using ideal completion—thus the

construction is suitable for simply-typed, higher-order logic theorem provers.

• A formalization of this construction in the HOLCF library of the Isabelle

theorem prover. The formalization is fully definitional; no new axioms are

asserted.

• A formalization of a type of algebraic deflations, which are used to repre-

sent types and type constructors. As a cpo, this type is also used to build

representations of recursive datatypes as least fixed points.

• An extension of the HOLCF Domain package to construct new types ex-

plicitly, replacing the isomorphism and reach axioms with actual theorems.

The new Domain package is purely definitional, and no longer declares any

axioms.

• The definition of a class of predomain types, which are an unpointed variant

of bifinite domains. We show how predomains can be represented with alge-

braic deflations, and how support for predomains can be integrated into the

new Domain package.



www.manaraa.com

197

Overview. The remainder of the chapter is organized as follows. We start with

background material about embedding-projection pairs and the deflation model

of recursive datatypes (§6.2); this material previews the implementation of the

definitional Domain package and motivates the definition of a universal domain.

Next is a summary of the user-visible interface to the HOLCF universal domain

library (§6.3). The construction of the universal domain type itself, along with

embedding and projection functions, is covered in the following section (§6.4).

After defining the universal domain, we move on to algebraic deflations, which

are used to formalize the class of representable domains (§6.5); and then to the

actual implementation of the new definitional Domain package (§6.6). We also

describe an unpointed variant of representable domains, called predomains, and

how they are supported by the Domain package (§6.7). The chapter concludes

with a discussion of related work (§6.8).

A significant portion of the material presented in this chapter is based on pre-

viously published work. The formalization of the universal domain was initially

described in the author’s 2009 paper [Huf09a], which predated the completion of

the definitional Domain package. Many of the ideas related to representable do-

mains and deflation combinators originated in an earlier joint paper with Matthews

and White [HMW05].

6.2 BACKGROUND

6.2.1 Embedding-projection pairs and deflations

Some cpos can be embedded within other cpos. The concept of an embedding-

projection pair (often shortened to ep-pair) formalizes this notion. Let A and B

be cpos, and e : A→ B and p : B → A be continuous functions. Then e and p are

an ep-pair if p ◦ e = IdA and e ◦ p v IdB. In this case, we write (e, p) : A ep→ B.

The existence of such an ep-pair means that cpo A can be embedded in cpo B.



www.manaraa.com

198

lemma ep pair comp:
assumes "ep pair e1 p1" and "ep pair e2 p2"
shows "ep pair (e2 oo e1) (p1 oo p2)"

definition prod map :: "(’a → ’b) → (’c → ’d) → ’a × ’c → ’b × ’d"
where "prod map = (Λ f g p. (f·(fst p), g·(snd p)))"

lemma ep pair prod map:
assumes "ep pair e1 p1" and "ep pair e2 p2"
shows "ep pair (prod map·e1·e2) (prod map·p1·p2)"

definition cfun map :: "(’b → ’a) → (’c → ’d) → (’a → ’c) → (’b → ’d)"
where "cfun map = (Λ a b f x. b·(f·(a·x)))"

lemma ep pair cfun map:
assumes "ep pair e1 p1" and "ep pair e2 p2"
shows "ep pair (cfun map·p1·e2) (cfun map·e1·p2)"

Figure 6.1: Lemmas for composing ep-pairs

locale ep pair =
fixes e :: "’a → ’b" and p :: "’b → ’a"
assumes e inverse: "∧x. p·(e·x) = x"
assumes e p below: "∧y. e·(p·y) v y"

Ep-pairs have many useful properties: e is injective, p is surjective, both are strict,

each function uniquely determines the other, and the range of e is a sub-cpo of

B. The composition of two ep-pairs yields another ep-pair: If (e1, p1) : A ep→ B

and (e2, p2) : B ep→ C, then (e2 ◦ e1, p1 ◦ p2) : A ep→ C. Ep-pairs can also be lifted

over many type constructors, including cartesian product and continuous function

space (see Fig. 6.1).

A continuous function d : A → A is a deflation if it is idempotent and below

the identity function: d ◦ d = d v IdA.



www.manaraa.com

199

p

e

p

e

p
v

(a) ep-pair

d

d

d

(b) deflation

Figure 6.2: Embedding-projection pairs and deflations

locale deflation =
fixes d :: "’a → ’a"
assumes idem: "∧x. d·(d·x) = d·x"
assumes below: "∧x. d·x v x"

Deflations and ep-pairs are closely related. Given an ep-pair (e, p) : A ep→ B, the

composition e◦p is a deflation on B whose image set is isomorphic to A. Conversely,

every deflation d : B → B also gives rise to an ep-pair. Define the cpo A to be

the image set of d; also define e to be the inclusion map from A to B, and define

p = d. Then (e, p) is an embedding-projection pair. So saying that there exists

an ep-pair from A to B is equivalent to saying that there exists a deflation on B

whose image set is isomorphic to A. Figure 6.2 shows the relationship between

ep-pairs and deflations.

A deflation is a function, but it can also be viewed as a set: Just take the image

of the function, or equivalently, its set of fixed points—for idempotent functions

they are the same. The dashed outline in Fig. 6.2 shows the set defined by the

deflation d. Every deflation on a cpo A gives a set that is a sub-cpo, and contains

⊥ if A has a least element. Not all sub-cpos have a corresponding deflation, but

if one exists then it is unique. The set-oriented and function-oriented views of

deflations also give the same ordering: For any deflations f and g, f v g if and

only if Im(f) ⊆ Im(g).



www.manaraa.com

200

6.2.2 Deflation model of datatypes

We say that a type A is representable in U if there exists an ep-pair from A to U ,

or equivalently if there exists a deflation dA on U whose image Im(d) is isomorphic

to A. We say that U is a universal domain for some class of cpos if every cpo in

the class is representable in U .

While types can be represented by deflations, type constructors (which are like

functions from types to types) can be represented as functions from deflations to

deflations. We say that a type constructor F is representable in U if there exists a

continuous function Φ, mapping from deflations to deflations, such that Im(Φ(d)) is

isomorphic to F (Im(d)). Such deflation combinators can be used to build deflations

for recursive datatypes [GS90, §7]. The remainder of this section will show how

this process works, by example. The new definitional Domain package uses the

same process to construct recursive datatypes, as will be explained in Sec. 6.6.

To illustrate the concepts of ep-pairs, deflations, and representable types, we

will examine some concrete implementations of these ideas in Haskell. We start

by defining a universal Haskell datatype U, which should be able to encode every

datatype definable in Haskell.

data U = Con String [U] | Fun (U -> U)

Type U has two constructors, Con and Fun. For encoding ordinary algebraic

datatypes like pairs, lists, or trees, we only need to use Con. The string iden-

tifies the constructor name; the list contains each of its encoded arguments. The

constructor Fun is required for the function space type (->) and other datatypes

containing functions.

We then define a Haskell type class Rep for “representable” Haskell types. We

expect that for each Rep class instance, emb and prj should always form an ep-pair.

class Rep a where
emb :: a -> U
prj :: U -> a



www.manaraa.com

201

Booleans are representable. Below we make the standard Haskell type Bool

an instance of class Rep. To check that emb and prj are an ep-pair, we can see

that prj is the inverse of emb. Also, we can see that prj is as “undefined” as

possible—it maps every ill-formed value to ⊥. Given the definition of emb, this is

the only definition of prj that will yield an ep-pair.

instance Rep Bool where
emb True = Con "True" []
emb False = Con "False" []
prj (Con "True" []) = True
prj (Con "False" []) = False
prj _ = undefined

The Haskell type Bool is represented by the function tBool, a deflation which is

equal to the composition (emb . prj) for type Bool. For an input that corre-

sponds to a well-formed encoded boolean, tBool maps the input to itself. Any

other input is mapped to ⊥.

tBool :: U -> U
tBool (Con "True" []) = Con "True" []
tBool (Con "False" []) = Con "False" []
tBool _ = undefined

Lists are representable. Next we will consider the standard Haskell list data-

type. We will create an ep-pair from type [a] to U as a composition of two ep-pairs,

with [U] used as an intermediate type. The functions embList and prjList form

an ep-pair from [U] to U.

embList :: [U] -> U
embList [] = Con "[]" []
embList (x : xs) = Con ":" [x, embList xs]

prjList :: U -> [U]
prjList (Con "[]" []) = []
prjList (Con ":" [x, xs]) = x : prjList xs
prjList _ = undefined



www.manaraa.com

202

To build an ep-pair from [a] to [U], we can use the emb and prj functions for the

element type a, noting that the standard map function for lists preserves ep-pairs.

Finally, we can define emb and prj on lists using function composition:

instance Rep a => Rep [a] where
emb = embList . map emb
prj = map prj . prjList

The list type constructor can be represented by the function tList, shown below.

tList :: (U -> U) -> (U -> U)
tList d = embList . map d . prjList

We can see that if d is a deflation, then so is tList d. It is also easy to ver-

ify that tList actually does represent the list type constructor: If d is equal to

(emb . prj) for type a, then tList d is equal to (emb . prj) for type [a].

Testing these functions on some example inputs can give us a better idea of

how they work. As expected, the deflation tList tBool maps any value that

corresponds to an encoded list of booleans to itself. For example, tList tBool

leaves the result of emb [True, False] unchanged:

emb [True, False] =
Con ":" [Con "True" [], Con ":" [Con "False" [], Con "[]" []]]

tList tBool
(Con ":" [Con "True" [], Con ":" [Con "False" [], Con "[]" []]])
= Con ":" [Con "True" [], Con ":" [Con "False" [], Con "[]" []]]

When applied to an ill-formed argument, however, a deflation like tList tBool

has the effect of replacing any ill-formed portions of the input with undefined:

tList tBool
(Con ":" [Con "bogus" [],

Con ":" [Con "False" [], Con "wrong" []]])
= Con ":" [undefined, Con ":" [Con "False" [], undefined]]



www.manaraa.com

203

Representability of function space. The approach used for lists can be gen-

eralized to any other type constructor with a map function—even contravariant

types like the function space. We start by defining functions embFun and prjFun,

which form an ep-pair between types U -> U and U.

embFun :: (U -> U) -> U
embFun !f = Fun f

prjFun :: U -> (U -> U)
prjFun (Fun f) = f
prjFun _ = undefined

The strictness annotation (!f) is necessary to make embFun strict, because Haskell

functions with variable patterns are lazy by default. (Both components of an

ep-pair must be strict functions.)

Next, we define a map-like operator for the Haskell function type (->). The

type of the argument a :: a2 -> a1 reflects the fact that the function space type

constructor is contravariant in its left argument.

mapFun :: (a2 -> a1) -> (b1 -> b2) -> (a1 -> b1) -> (a2 -> b2)
mapFun a b !f = b . f . a

Finally, we can define a class instance for the function type a -> b.

instance (Rep a, Rep b) => Rep (a -> b) where
emb = embFun . mapFun prj emb
prj = mapFun emb prj . prjFun

For the list example, emb on lists only calls emb on the element type, and similarly

prj calls only prj. But because the function type a -> b is contravariant in a, we

have emb :: (a -> b) -> U calling prj :: U -> a, and prj :: U -> (a -> b)

calling emb :: a -> U.

The function tFun represents the Haskell function space type constructor (->).

If a and b are both deflations, then tFun a b will be a deflation also.



www.manaraa.com

204

tFun :: (U -> U) -> (U -> U) -> (U -> U)
tFun a b = embFun . mapFun a b . prjFun

Recursive definitions of deflations. Using the deflation combinators tBool,

tList, and tFun, we can recursively define new deflations that represent recursive

datatypes. For example, consider the deflations tD and tE below:

tD, tE :: U -> U
tD = tFun tBool (tList tD)
tE = tFun (tList tE) tE

The image set of tD is a cpo D that satisfies the equation D = Bool -> [D].

Likewise, the image set of tE is a cpo E that satisfies E = [E] -> E. In general, we

can recursively define a deflation for any given type equation of the form T = F (T ),

where F (T ) is a type expression involving type constructors (like Bool, [], or (->))

for which we have deflation combinators.

Thus by using the deflation model, we can solve type equations with ordinary

recursive value definitions. This is a significant benefit for HOLCF, because it

means that the theory of least fixed points used by the Fixrec package can all

be reused in the new definitional Domain package. As a prerequisite for solving

type equations, the Domain package needs deflation combinators for all the basic

HOLCF types. And as we have seen above, defining the deflation combinators will

require ep-pairs from each basic HOLCF type into the universal domain.

6.3 UNIVERSAL DOMAIN LIBRARY FEATURES

The universal domain library is large (about 1000 lines of definitions and proof

scripts), defining various types and numerous functions and constants. However,

most of these are for internal use only. Just a few parts of the library are directly

relevant for users: There is the universal domain type udom, which is an instance

of the bifinite class, along with the following three functions:



www.manaraa.com

205

udom emb :: "(nat ⇒ ’a → ’a) ⇒ ’a → udom"
udom prj :: "(nat ⇒ ’a → ’a) ⇒ udom → ’a"
udom approx :: "nat ⇒ udom → udom"

The functions udom emb and udom prj give an ep-pair from type ’a to udom. They

are parameterized by a chain of approx functions on type ’a.

lemma ep pair udom:
assumes "approx chain a"
shows "ep pair (udom emb a) (udom prj a)"

Recall the definition of approx-chains, used in the previous chapter for defining the

class of bifinite cpos. A cpo is bifinite if an approx-chain exists for that type.

locale approx chain =
fixes approx :: "nat ⇒ ’a → ’a"
assumes chain approx: "chain (λi. approx i)"
assumes lub approx: "(⊔i. approx i) = ID"
assumes finite deflation approx: "∧i. finite deflation (approx i)"

In order to help build approx-chains for other types, the universal domain library

provides udom approx, which is an approx-chain for type udom.

lemma udom approx: "approx chain udom approx"

We can use all three udom functions in combination to yield ep-pairs for types

like udom × udom. Using udom approx with the map combinator prod map, which

preserves finite deflations, yields an approx-chain on type udom × udom. Then the

udom emb and udom prj functions give the desired ep-pair.

definition prod emb :: "udom × udom → udom"
where "prod emb =
udom emb (λi. prod map·(udom approx i)·(udom approx i))"

definition prod prj :: "udom → udom × udom"
where "prod prj = udom prj (λi. prod map·(udom approx i)·(udom approx i))"

lemma ep pair prod: "ep pair prod emb prod prj"



www.manaraa.com

206

Embedding-projection pairs are defined similarly for all of the other type construc-

tors defined in HOLCF: →, ⊗, ⊕, −⊥, (−)], (−)[, and (−)\. These ep-pairs are

used to define deflation combinators that represent each type constructor; in turn,

these combinators are used to construct solutions to recursive domain equations.

Details of this process will be covered fully in Sections 6.5 and 6.6.

6.4 CONSTRUCTION OF THE UNIVERSAL DOMAIN

Informally, a bifinite domain is a cpo that can be written as the limit of a sequence

of finite partial orders. This section describes how to construct a universal bifinite

domain U , along with an ep-pair from another arbitrary bifinite domain D into U .

The general strategy is as follows:

• From the bifinite structure of D, obtain a sequence of finite posets Pn whose

limit is D.

• Following Gunter [Gun87], decompose the sequence Pn further into a se-

quence of increments that insert new elements one at a time.

• Construct a universal domain basis that can encode any increment.

• Construct the actual universal domain U using ideal completion.

• Define the embedding and projection functions between D and U using con-

tinuous extension, in terms of their action on basis elements.

The process of constructing a sequence of increments is described in Sec. 6.4.1.

The underlying theory is standard, so the section is primarily exposition; the orig-

inal contribution here is the formalization of that work in a theorem prover. The

remainder of the construction, including the basis and embedding/projection func-

tions, is covered in Sec. 6.4.2 onwards; here both the theory and the formalization

are original.



www.manaraa.com

207

P0 P1 P2 P3

Figure 6.3: A sequence of finite posets. Each Pn can be embedded into Pn+1; black

nodes indicate the range of the embedding function.

6.4.1 Building a sequence of increments

Any bifinite domain D can be represented as the limit of a sequence of finite posets,

with embedding-projection pairs between each successive pair. Figure 6.3 shows

the first few posets from one such sequence.

In each step along the chain, each new poset Pn+1 is larger than the previous

Pn by some finite amount; the structure of Pn+1 has Pn embedded within it, but

it has some new elements as well.

An ep-pair between finite posets P and P ′, where P ′ has exactly one more

element than P , is called an increment (terminology due to Gunter [Gun92]). In

Fig. 6.3, the embedding of P1 into P2 is an example of an increment.

The strategy for embedding a bifinite domain into the universal domain is built

around increments. The universal domain is designed so that if a finite partial order

P is representable (i.e., by a deflation), and there is an increment from P to P ′,

then P ′ will also be representable.

For all embeddings from Pn to Pn+1 that add more than one new value, we

will need to decompose the single large embedding into a sequence of smaller

increments. The challenge, then, is to determine in which order the new elements

should be inserted. The order matters: Adding elements in the wrong order can

cause problems, as shown in Fig. 6.4.

To describe the position of a newly-inserted element, it will be helpful to invent



www.manaraa.com

208

=⇒ =⇒ =⇒

=⇒ =⇒ =⇒

Figure 6.4: The right (top) and wrong (bottom) way to order insertions. No ep-pair

exists between the 3-element and 4-element posets on the bottom row.

some terminology. The set of elements above the new element will be known as

its superiors. An element immediately below the new element will be known as its

subordinate. (These terms are not in standard usage.)

In order for the insertion of a new element to be a valid increment, it must have

exactly one subordinate. The subordinate indicates the value that the increment’s

projection maps the new value onto.

With the four-element poset in Fig. 6.4, it is not possible to insert the top

element last. The reason is that the element has two subordinates: If a projection

function maps the new element to one, the ordering relation with the other will

not be preserved. Thus a monotone projection does not exist.

A strategy for successfully avoiding such situations is to always insert maximal

elements first [Gun87, §5]. Fig. 6.5 shows this strategy in action. Notice that the

number of superiors varies from step to step, but each inserted element always

has exactly one subordinate. To maintain this invariant, the least of the four new

values must be inserted last.

Armed with this strategy, we can finally formalize the complete sequence of

increments for type D. To each element x of the basis of D we must assign

a sequence number place(x)—this numbering tells in which order to insert the

values. The HOLCF formalization breaks up the definition of place as follows.

First, each basis value is assigned to a rank, where rank(x) = n means that the



www.manaraa.com

209

P2 P2.1 P2.2 P2.3 P3

Figure 6.5: A sequence of four increments going from P2 to P3. Each new node

may have any number of upward edges, but only one downward edge.

basis value x first appears in the poset Pn. Equivalently, rank(x) is the least n

such that approxn(x) = x, where approxn is the finite deflation on D with image

Pn. Then an auxiliary function pos assigns sequence numbers to values in finite

sets, by repeatedly removing an arbitrary maximal element until the set is empty.

Finally, place(x) is defined as the sequence number of x within its (finite) rank set,

plus the total cardinality of all earlier ranks.

choose(A) = (εx ∈ A. ∀y ∈ A. x v y −→ x = y) (6.1)

pos(A, x) =


0, if x = choose(A)

1 + pos(A− {choose(A)}, x), if x 6= choose(A)
(6.2)

place(x) = pos({y | rank(y) = rank(x)}, x) + ‖{y | rank(x) < rank(y)}‖ (6.3)

For the remainder of this chapter, it will be sufficient to note that the place function

satisfies the following two properties:

Theorem 6.4.1. Values in earlier ranks come before values in later ranks: If

rank(x) < rank(y), then place(x) < place(y).

Theorem 6.4.2. Within the same rank, larger values come first: If rank(x) =

rank(y) and x v y, then place(y) < place(x).



www.manaraa.com

210

6.4.2 A basis for the universal domain

Constructing a partial order incrementally, there are two possibilities for any newly

inserted value:

• The value is the very first one (i.e., it is ⊥)

• The value is inserted above some previous value (its subordinate), and below

zero or more other previous values (its superiors)

Accordingly, we can define a recursive datatype B to describe the position of these

values relative to each other.

B := ⊥ | 〈i, a, S〉,where i ∈ N, a ∈ B, and S ∈ Pf (B) (6.4)

The notation 〈i, a, S〉 indicates the value with serial number i, subordinate a, and

the finite set of superiors S. (The serial number allows us to distinguish between

subsequent values inserted in similar positions.)

The above definition of B does not work as a datatype definition in Isabelle/

HOL, because the finite set type constructor does not work with the datatype

package. (Indirect recursion only works with other inductive datatypes.) But it

turns out that we do not need the datatype package at all—the type B is actually

isomorphic to the natural numbers. Using the bijections N ∼= 1+N and N ∼= N×N

with N ∼= Pf (N), we can construct a bijection that lets us use N as the basis

datatype:

N ∼= 1 + N× N× Pf (N) (6.5)

Figure 6.6 shows how this system works for embedding all the elements from

the poset P3 into the basis datatype. The elements have letter names from a–

h, assigned alphabetically by insertion order. In the datatype encoding of each

element, the subordinate and superiors are selected from the set of previously

inserted elements. Serial numbers are assigned sequentially.



www.manaraa.com

211

a

b

cd

e

f g

h

a = ⊥
b = 〈1, a, {}〉
c = 〈2, a, {}〉
d = 〈3, a, {b}〉
e = 〈4, b, {}〉
f = 〈5, d, {e}〉
g = 〈6, c, {}〉
h = 〈7, a, {e, f, g}〉

Figure 6.6: Embedding elements of P3 into the universal domain basis.

The serial number is necessary to distinguish multiple values that are inserted

in the same position. For example, in Fig. 6.6, elements b and c both have a as

the subordinate, and neither has any superiors. The serial number is the only way

to tell such values apart.

Note that the basis datatype seems to contain some junk—some subordinate/

superiors combinations are not well formed. For example, in any valid increment,

all of the superiors are positioned above the subordinate. One way to take care of

this requirement would be to define a well-formedness predicate for basis elements.

However, it turns out that it is possible (and indeed easier) to simply ignore any

invalid elements. In the set of superiors, only those values that are above the

subordinate will be considered. (This will be important to keep in mind when we

define the basis ordering relation.)

There is also a possibility of multiple representations for the same value. For

example, in Fig. 6.6 the encoding of h is given as 〈7, a, {e, f, g}〉, but the represen-

tation 〈7, a, {f, g}〉 would work just as well (because the sets have the same upward

closure). One could consider having a well-formedness requirement for the set of

superiors to be upward-closed. But this turns out not to be necessary, because the

extra values do not cause problems for any of the formal proofs.



www.manaraa.com

212

6.4.3 Basis ordering relation

To perform the ideal completion, we need to define a preorder relation on the

basis. The basis value 〈i, a, S〉 should fall above a and below all the values in set S

that are above a. Accordingly, we define the relation (�) as the smallest reflexive,

transitive relation that satisfies the following two introduction rules:

a � 〈i, a, S〉 (6.6)

a � b ∧ b ∈ S =⇒ 〈i, a, S〉 � b (6.7)

Note that the relation (�) is not antisymmetric. For example, we have both

a � 〈i, a, {a}〉 and 〈i, a, {a}〉 � a. However, for ideal completion this does not

matter. Basis values a and 〈i, a, {a}〉 generate the same principal ideal, so they

will be identified as elements of the universal domain.

Also note the extra hypothesis a � b in Eq. (6.7). Because we have not banished

ill-formed subordinate/superiors combinations from the basis datatype, we must

explicitly consider only those elements of the set of superiors that are above the

subordinate.

6.4.4 Building the embedding and projection

In the HOLCF formalization, the embedding function emb from D to U is de-

fined using continuous extension. We start by defining emb on basis elements,

generalizing the pattern shown in Fig. 6.6. The definition below uses wellfounded

recursion—all recursive calls to emb are on values with smaller place numbers.

emb(x) =


⊥ if x = ⊥

〈i, a, S〉 otherwise

where i = place(x) (6.8)

a = emb(sub(x))

S = {emb(y) | place(y) < place(x) ∧ x v y}



www.manaraa.com

213

The subordinate value a is computed using a helper function sub, which is defined

as sub(x) = approxn−1(x), where n = rank(x). The ordering produced by the place

function ensures that no previously inserted value with the same rank as x will

be below x. Therefore the previously inserted value immediately below x must be

sub(x), which comes from the previous rank.

In order to complete the continuous extension, it is necessary to prove that the

basis embedding function is monotone. That is, we must show that for any x and

y in the basis of D, x v y implies emb(x) � emb(y). The proof is by well-founded

induction over the maximum of place(x) and place(y). There are two main cases

to consider:

• Case place(x) < place(y): Because x v y, it must be the case that rank(x) <

rank(y). Then, using the definition of sub it can be shown that x v sub(y);

thus by the inductive hypothesis we have emb(x) � emb(sub(y)). Also, from

Eq. (6.6) we have emb(sub(y)) � emb(y). Finally, by transitivity we have

emb(x) � emb(y).

• Case place(y) < place(x): From the definition of sub we have sub(x) v x. By

transitivity with x v y this implies sub(x) v y; therefore by the inductive

hypothesis we have emb(sub(x)) � emb(y). Also, using Eq. (6.8), we have

that emb(y) is one of the superiors of emb(x). Ultimately, from Eq. (6.7) we

have emb(x) � emb(y).

The projection function prj from U to D is also defined using continuous ex-

tension. The action of prj on basis elements is specified by the following recursive

definition:

prj(a) =


emb−1(a) if ∃x. emb(x) = a

prj(subordinate(a)) otherwise
(6.9)

To ensure that prj is well-defined, there are a couple of things to check. First

of all, the recursion always terminates: In the worst case, repeatedly taking the



www.manaraa.com

214

subordinate of any starting value will eventually yield ⊥, at which point the first

branch will be taken because emb(⊥) = ⊥. Secondly, note that emb−1 is uniquely

defined, because emb is injective. Injectivity of emb is easy to prove, because each

embedded value has a different serial number.

Just like with emb, we also need to prove that the basis projection function prj

is monotone. That is, we must show that for any a and b in the basis of U , a � b

implies prj(a) v prj(b). Remember that the basis preorder (�) is an inductively

defined relation; accordingly, the proof proceeds by induction on a � b. Compared

to the proof of monotonicity for emb, the proof for prj is relatively straightforward;

details are omitted here.

Finally, we must prove that emb and prj form an ep-pair. The proof of prj ◦

emb = IdD is easy: Let x be any value in the basis of D. Then using Eq. (6.9), we

have prj(emb(x)) = emb−1(emb(x)) = x. Because this equation is an admissible

predicate on x, proving it for compact x is sufficient to show that it holds for all

values in the ideal completion.

The proof of emb ◦ prj v IdU takes a bit more work. As a lemma, we can

show that for any a in the basis of U , prj(a) is always equal to emb−1(b) for some

b � a that is in the range of emb. Using this lemma, we then have emb(prj(a)) =

emb(emb−1(b)) = b � a. Finally, using admissibility, this is sufficient to show that

emb(prj(a)) v a for all a in U .

6.4.5 Bifiniteness of the universal domain

To show that the universal domain U is bifinite, we must construct a chain of

finite deflations on U whose least upper bound is the identity function. Like all

other functions in the universal domain library, these are defined by continuous

extension. The action of uapproxn on basis elements is defined using exactly the

same form of recursion as prj: We repeatedly take the subordinate of the input

value, until the value satisfies some stopping criterion. With prj, the criterion was



www.manaraa.com

215

membership in the image of emb; for uapproxn, the criterion is that the input,

considered as a natural number, is less than or equal to n.

uapproxn(a) =


a if a ≤ n

uapproxn(subordinate(a)) otherwise
(6.10)

It is straightforward to show that uapproxn is a deflation, using induction over

basis elements. Furthermore, we can show that the image of each uapproxn equals

the set of basis elements corresponding to natural numbers {0..n}, which is a finite

set. To see that ⊔
n uapproxn is the identity function, consider that for any basis

value a, there exists n such that uapproxn(a) = a (namely, n = a).

6.4.6 Implementation in HOLCF

The universal domain type U is formalized in HOLCF ’11 as the type udom. It is

defined by ideal completion over the natural numbers, using the method described

in Chapter 5. The complete formal proof scripts can be found in the theory file

HOLCF/Universal.thy of the Isabelle 2011 distribution.

Most of the theory leading up to the emb and prj functions is parameterized

by the chain approxn of finite deflations, using a copy of the approx chain locale

(see Sec. 5.6).

locale approx chain =
fixes approx :: "nat ⇒ ’a → ’a"
assumes chain approx: "chain (λi. approx i)"
assumes lub approx: "(⊔i. approx i) = ID"
assumes finite deflation approx: "∧i. finite deflation (approx i)"

The HOLCF versions of the functions choose, pos, rank, place, sub, emb and prj

are all defined within this locale. To generate type-specific emb and prj functions,

we could then perform locale interpretations (see Sec. 5.5.2) for specific approx-

chains. However, locale interpretations would be rather wasteful: Each one would



www.manaraa.com

216

unnecessarily create copies of every constant and lemma used in the entire con-

struction, when we really only need two constants (emb and prj) and one lemma

(stating that they form an ep-pair). As a more lightweight alternative, we define

udom emb and udom prj as the parameterized versions of emb and prj exported

from the locale.

6.5 ALGEBRAIC DEFLATIONS

For solving the domain equations that arise in recursive datatype definitions, we

need a cpo T whose values will represent bifinite domains. For this purpose, we use

the set of algebraic deflations over the universal domain U : We say that a deflation

is algebraic if its image set is an algebraic cpo. In HOLCF ’11, the algebraic

deflations are defined using ideal completion from the set of finite deflations, which

have finite image sets. Note that as an ideal completion, T is itself a cpo; this is

important because it lets us use a fixed point combinator to define recursive values

of type T , representing recursive types.

6.5.1 Limitations of ordinary deflations

In an earlier HOLCF formalization of representable types and type constructors

[HMW05], datatypes were represented using a type of all deflations over a given

cpo:

pcpodef ’a deflation = "{f::’a → ’a. deflation f}"

This definition yields a pointed cpo, because the deflation predicate is admissible,

and holds for ⊥. As a pointed cpo, the deflation type supports a fixed point

combinator, which allows us to define recursive deflations to represent recursive

datatypes. Furthermore, being defined with the Cpodef package makes it easy

to define deflation combinators: We can use the Rep deflation and Abs deflation

functions, which Cpodef has proved to be continuous.



www.manaraa.com

217

definition prod deflation ::
"udom deflation → udom deflation → udom deflation"

where "prod deflation = (Λ a b. Abs deflation
(prod emb oo prod map·(Rep deflation a)·(Rep deflation b) oo prod prj))"

In the earlier formalization [HMW05], we defined a class rep of representable do-

mains: These are pointed cpos that can be embedded, via an embedding-projection

pair, into the universal domain.

class rep = pcpo +
fixes emb :: "’a → udom"
fixes prj :: "udom → ’a’’
assumes ep pair emb prj: "ep pair emb prj"

We can obtain the representation of any type in class rep as a value of type

udom deflation, by composing emb and prj. (The argument type ’a itself is pre-

defined in Isabelle for use in definitions like this, where the right-hand side men-

tions a type variable ’a, but no actual values of type ’a. It has a single value,

written TYPE(’a).)

definition rep :: "(’a::rep) itself ⇒ udom deflation"
where "rep ( :: ’a itself) =
Abs deflation ((emb :: ’a → udom) oo (prj :: udom → ’a))"

The main problem with this approach is that class rep is not a subclass of

class bifinite: Although udom is algebraic, this does not imply that every type

representable in udom is algebraic. This means that if we used the above definition

for a class of representable domains, then we could not use such types with the

powerdomain library, which requires algebraic element types. To ensure that every

representable domain is bifinite, we must restrict our attention to the algebraic

deflations.



www.manaraa.com

218

6.5.2 Type of algebraic deflations

As noted above, the HOLCF type of algebraic deflations is defined as an ideal

completion from the set of finite deflations. The ideal completion process described

in Chapter 5 requires a type to use as a basis; we define the type ’a fin defl of

finite deflations over ’a for this purpose (using the open option, as usual, to avoid

defining an extra set constant). We then proceed to define the cpo ’a defl of

algebraic deflations over ’a, using the same standard process used previously for

powerdomains: First define a new type as the set of ideals; then after proving that

it is a cpo, define a principal function and interpret the ideal completion locale.

typedef (open) ’a fin defl = "{d::’a → ’a. finite deflation d}"

typedef (open) ’a defl = "{S :: ’a fin defl set. below.ideal S}"

definition defl principal :: "’a fin defl ⇒ ’a defl"
where "defl principal t = Abs defl {u. u v t}"

interpretation defl: ideal completion below defl principal Rep defl

The most common operation on deflations is to apply them as functions. For

this purpose we define the cast operator. For a deflation t that represents a type,

cast·t is essentially like a type cast into that type. As type ’a defl is an ideal

completion, we can define cast as the continuous extension of Rep fin defl.

definition cast :: "’a defl → ’a → ’a"
where "cast = defl.extension (Rep fin defl :: ’a fin defl ⇒ ’a → ’a)"

We can prove a few properties about cast using principal induction. First, that

cast always yields deflations; second, that cast preserves ordering.

lemma deflation cast: "deflation (cast·t)"

lemma cast below cast: "cast·t v cast·u ←→ t v u"

The proof of cast below cast is similar to many of the proofs of if-and-only-if lemmas

from Chapter 5: The proposition as stated is admissible in t, but not in u. However,



www.manaraa.com

219

after performing principal induction on t, reasoning about compactness shows that

the remaining subgoal is admissible in u. The proof also relies on the fact that

finite deflations are compact elements of the continuous function space. A direct

corollary is that the cast function is injective, which gives us a way to prove that

two given algebraic deflations are equal.

6.5.3 Combinators for algebraic deflations

Recall the way that Haskell deflation combinators were defined above in Sec. 6.2.2.

Each deflation combinator is written as a composition involving an ep-pair and a

map function. For example the combinator tFun, which represents the function

space type, is defined like this:

tFun :: (U -> U) -> (U -> U) -> (U -> U)
tFun a b = embFun . mapFun a b . prjFun

We would like to formalize the Haskell function tFun in HOLCF as a function

cfun defl :: udom defl → udom defl → udom defl. We already know how to formal-

ize the other Haskell functions used in the definition of tFun: First, the map

combinator cfun map can represent mapFun. Then as described in Sec. 6.3, we can

use the universal domain library to define cfun emb and cfun prj as an ep-pair from

udom → udom into udom, to model embFun and prjFun. Our remaining task is

then to define cfun defl so that it meets this specification:

lemma cast cfun defl:
"cast·(cfun defl·a·b) = cfun emb oo cfun map·(cast·a)·(cast·b) oo cfun prj"

As cfun defl is a function that takes algebraic deflations as arguments, we can

define it as a continuous extension. Because we will have similar definitions for

several other HOLCF type constructors besides the continuous function space, we

define a generic combinator defl fun2 that takes the emb, prj, and map functions as

parameters.



www.manaraa.com

220

definition defl fun2 ::
"(’c → ’u) ⇒ (’u → ’c) ⇒ ((’a → ’a) → (’b → ’b) → (’c → ’c))
⇒ ’a defl → ’b defl → ’u defl"

where "defl fun2 e p f =
defl.extension (λa. defl.extension (λb. defl principal
(Abs fin defl (e oo f·(Rep fin defl a)·(Rep fin defl b) oo p))))"

definition cfun defl :: "udom defl → udom defl → udom defl"
where "cfun defl = defl fun2 cfun emb cfun prj cfun map"

We can then prove the lemma cast cfun defl as an instance of a generic lemma

about defl fun2. The proof involves showing that the argument to Abs fin defl in the

definition of defl fun2 is actually a finite deflation. In turn, this requires that the

e and p parameters form an ep-pair, and also that the map parameter f preserves

finite deflations.

lemma cast defl fun2:
assumes "ep pair e p"
assumes
"∧a b. Jfinite deflation a; finite deflation bK =⇒ finite deflation (f·a·b)"

shows "cast·(defl fun2 e p f·A·B) = e oo f·(cast·A)·(cast·B) oo p"

In addition to defl fun2, we also define a combinator defl fun1 for use with

single-argument type constructors. Using these, we define deflation combinators

for all of the type constructors in HOLCF (lifting, product, strict product, strict

sum, continuous function space, and all three powerdomains).

6.5.4 Type class of representable domains

We define a representable domain as a cpo that can be embedded (via an ep-pair)

into the universal domain. Furthermore, we require that the composition of emb

and prj must yield an algebraic deflation on the universal domain.

class domain = pcpo +
fixes emb :: "’a → udom"
fixes prj :: "udom → ’a"



www.manaraa.com

221

fixes defl :: "’a itself ⇒ udom defl"
assumes ep pair emb prj: "ep pair emb prj"
assumes cast DEFL: "cast·(defl TYPE(’a)) = emb oo prj"

For convenience, we also define the syntax DEFL(’a) as shorthand for defl TYPE(’a).

Unlike the class rep shown earlier, this definition of class domain is prov-

ably a subclass of bifinite. The proof uses lemma obtain principal chain from the

ideal completion locale of Chapter 5. Given any algebraic deflation t, there exists

a chain of finite deflations whose least upper bound is t. This lemma is applied

to obtain a chain of finite deflations whose least upper bound is DEFL(’a). We

can then compose the elements of this chain with emb and prj to construct an

approx-chain on type ’a.

In HOLCF ’11, class domain replaces class pcpo as the default sort: All the

types most HOLCF users will typically work with must be in class domain. This

means that we need class instances for each of the type constructors in HOLCF.

Recall the Haskell Rep class instance for the function type:

instance (Rep a, Rep b) => Rep (a -> b) where
emb = embFun . mapFun prj emb
prj = mapFun emb prj . prjFun

The HOLCF domain class instance for the continuous function space is defined in

precisely the same way.

instantiation cfun :: (domain, domain) domain
begin
definition "emb = cfun emb oo cfun map·prj·emb"
definition "prj = cfun map·emb·prj oo cfun prj"
definition "defl ( :: (’a → ’b) itself) = cfun defl·DEFL(’a)·DEFL(’b)"
instance ...

end

The instance proof requires us to show that emb and prj are an ep-pair; this is

easy to show using lemmas from Fig. 6.1 like ep pair comp and ep pair cfun map.



www.manaraa.com

222

We must also show that cast·DEFL(’a → ’b) = emb oo prj, which follows without

too much trouble from cast cfun defl and cast DEFL, using the fact that cfun map

preserves function composition. Class instantiations for the other HOLCF type

constructors (lifting, product, strict product, strict sum, and powerdomains) all

follow the same pattern.

For base types like unit and ’a lift, for which we do not have corresponding

deflation combinators, the class instantiations are a little different. For these types,

we can explicitly construct an approx-chain a to establish a bifinite class instance.

Then emb and prj can be defined directly as udom emb a and udom prj a from the

universal domain library. Finally, defl can be defined explicitly as a least upper

bound of a chain of finite deflations on udom, based on the finite deflations from

the approx-chain a.

6.6 THE DEFINITIONAL DOMAIN PACKAGE

Equipped with formalizations of the universal domain and algebraic deflations, it

is now possible to implement the Domain package in a completely definitional

way, without generating axioms. The purpose of this section is to describe how

the new definitional implementation works—how each “axiom” can now be derived

as a theorem.

The definitional Domain package reuses nearly all the code from the axiomatic

Domain package. Figure 6.7 contains a copy of the implementation schematic

from Chapter 4; recall that the part in the dotted lines is where the axioms are

generated. The definitional Domain package is identical to the axiomatic one,

except that it uses a drop-in replacement for this part.

The axiomatic Domain package generates two kinds of axioms: First, isomor-

phism axioms state that the rep and abs functions for each new type are each

other’s inverses. Second, the reach axiom for each type states a low-level induc-

tion rule, asserting that the least upper bound of a chain of take functions is the



www.manaraa.com

223

input
spec

isomorphism
axioms

take
functions

reach
axioms

take
induction

constructor
functions

take
rules

high-level
induction

Figure 6.7: Domain package implementation schematic

identity. The remainder of this section will show how these axioms are derived as

theorems, using a lazy list datatype as an example to help explain the process.

domain ’a llist = LNil | LCons (lazy "’a") (lazy "’a llist")

6.6.1 Proving the isomorphism theorems

To construct a domain isomorphism for the lazy list type, information about data

constructors is irrelevant; all we need is the domain equation ’a llist ∼= one ⊕ (’a⊥ ⊗

’a llist⊥). Solving this domain equation is a three-step process: The definitional

Domain package first defines a deflation combinator, then uses the deflation to

define the ’a llist type, and finally defines the isomorphism functions.

Defining deflation combinators. The first step is to define a deflation combi-

nator llist defl :: udom defl → udom defl that models the lazy list type constructor.

The deflation combinator is determined by the domain equation that type ’a llist

must satisfy:

’a llist ∼= one ⊕ (’a⊥ ⊗ ’a llist⊥)

The definition of llist defl will refer to the deflation combinator of each type con-

structor mentioned on the right-hand side of this domain equation. To keep track of



www.manaraa.com

224

lemma [domain defl simps]:
"DEFL(’a → ’b) = cfun defl·DEFL(’a)·DEFL(’b)"
"DEFL(’a ⊕ ’b) = ssum defl·DEFL(’a)·DEFL(’b)
"DEFL(’a ⊗ ’b) = sprod defl·DEFL(’a)·DEFL(’b)"
"DEFL(’a × ’b) = prod defl·DEFL(’a)·DEFL(’b)"
"DEFL(’a⊥) = u defl·DEFL(’a)"
"DEFL((’a)]) = upper defl·DEFL(’a)"
"DEFL((’a)[) = lower defl·DEFL(’a)"
"DEFL((’a)\) = convex defl·DEFL(’a)"

Figure 6.8: Extensible set of rules with the domain defl simps attribute

the correspondence between type constructors and deflation combinators, the Do-

main package maintains an extensible list of theorems with the [domain defl simps]

attribute. The initial set of these rules is shown in Fig. 6.8.

Using domain defl simps, the Domain package produces the recursive specifica-

tion of llist defl shown below as llist defl unfold. The actual non-recursive definition

of llist defl, using the least fixed point combinator fix, is created using the same

machinery employed by the Fixrec package; llist defl unfold is then derived from

the non-recursive definition as a theorem.

theorem llist defl unfold:
"llist defl·t = ssum defl·DEFL(one)·(sprod defl·(u defl·t)·(u defl·(llist defl·t)))"

Defining representable domains from deflations. The second step is to use

llist defl to define the actual ’a llist type. In Sections 6.5.3 and 6.5.4, the aim was

to build algebraic deflations of type udom defl to correspond with pre-existing cpo

types. Now, we need to do the converse: Given a deflation of type udom defl, we

must define the corresponding cpo. We can accomplish this with the help of the

Cpodef package.

The first step in defining a new cpo type with Cpodef is to determine a subset



www.manaraa.com

225

of values of the old cpo type. We define the defl set function for this purpose: It

produces the image set of any deflation t, defined as the set of fixed points of cast·t.

definition defl set :: "’a defl ⇒ ’a set"
where "defl set t = {x. cast·t·x = x}"

Now we can define ’a llist as a pointed cpo, isomorphic to the image set of the

deflation llist defl·DEFL(’a).

pcpodef (open) ’a llist = "defl set (llist defl·DEFL(’a))"

The Cpodef package generates two proof obligations: First, that membership in

the given set is admissible, and also that the given set contains ⊥. Both of these

properties hold for any application of defl set.

lemma adm defl set: "adm (λx. x ∈ defl set t)"

lemma defl set bottom: "⊥ ∈ defl set t"

The pcpodef command only proves that type ’a llist is a pcpo; we still need to

provide an instantiation of the domain class. This instantiation requires definitions

of emb, prj, and defl, which are defined as follows:

instantiation llist :: (domain) domain
begin
definition "(emb :: ’a llist → udom) ≡ (Λ x. Rep llist x)"
definition "(prj :: udom → ’a llist) ≡

(Λ x. Abs llist (cast·(llist defl·DEFL(’a))·x))"
definition "defl ≡ (λ( :: ’a llist itself). llist defl·DEFL(’a))"
instance ...

end

The instance proof requires us to show that emb and prj are an ep-pair, and also

that the composition emb oo prj is equal to cast·DEFL(’a llist). Instead of repeating

this proof for each new domain definition, we employ a generic lemma that proves

the OFCLASS predicate, in the style of the lemmas used to implement Cpodef.



www.manaraa.com

226

lemma typedef domain class:
fixes Rep :: "’a::pcpo ⇒ udom"
fixes Abs :: "udom ⇒ ’a::pcpo"
fixes t :: "udom defl"
assumes type: "type definition Rep Abs (defl set t)"
assumes below: "below ≡ (λx y. Rep x v Rep y)"
assumes emb: "emb ≡ (Λ x. Rep x)"
assumes prj: "prj ≡ (Λ x. Abs (cast·t·x))"
assumes defl: "defl ≡ (λ( :: ’a itself). t)"
shows "OFCLASS(’a, domain class)"

The assumptions type and below in this rule can be satisfied by theorems generated

by Cpodef; the other assumptions are simply the definitions from the domain class

instantiation.

After proving the class instance, we can extend domain defl simps with a new

rule for the lazy list type constructor; this rule follows immediately from the defi-

nition of defl for lazy lists.

theorem DEFL llist [domain defl simps]: "DEFL(’a llist) = llist defl·DEFL(’a)"

This entire process of defining a representable domain from a deflation is auto-

mated with the Domaindef package, which is built as a thin layer on top of the

Cpodef package. Domaindef is called internally by the definitional Domain

package, and it is also available as a user-level command. Unlike Cpodef, it is

completely automatic; no additional proof obligations are needed.

domaindef ’a llist = "llist defl·DEFL(’a)"

The above domaindef command defines type ’a llist, proves a domain class instance,

and adds theorem DEFL llist to domain defl simps.

Constructing isomorphism functions as coercions. The third step is to

actually construct the desired domain isomorphism, by defining continuous rep

and abs functions and proving that they are each other’s inverses.



www.manaraa.com

227

For any representable domains ’a and ’b, composing emb :: ’a → udom with

prj :: udom → ’b yields a coercion prj oo emb :: ’a → ’b. If DEFL(’a) v DEFL(’b),

then the coercions from ’a to ’b and back form an ep-pair. If DEFL(’a) = DEFL(’b),

then the coercions from ’a to ’b and back form a continuous isomorphism. The

Domain package uses this fact to define the rep and abs functions for each new

domain, and show that they form a continuous isomorphism.

definition llist rep :: "’a llist → one ⊕ (’a⊥ ⊗ ’a llist⊥)"
where "llist rep ≡ prj oo emb"

definition llist abs :: "one ⊕ (’a⊥ ⊗ ’a llist⊥) → ’a llist"
where "llist abs ≡ prj oo emb"

Before we can prove that llist rep and llist abs are a continuous isomorphism,

we must prove that the types they coerce between are represented by the same

deflation. Theorem DEFL eq llist is easily proved using domain defl simps together

with llist defl unfold.

theorem DEFL eq llist: "DEFL(’a llist) = DEFL(one ⊕ (’a⊥ ⊗ ’a llist⊥))"

Using DEFL eq llist, the definitional Domain package can prove that llist abs

and llist rep are an isomorphism—in the axiomatic Domain package, llist.abs iso

and llist.rep iso would have been declared as axioms.

theorem llist.abs iso: "llist rep·(llist abs·x) = x"

theorem llist.rep iso: "llist abs·(llist rep·y) = y"

Theorem llist.abs iso is proved by instantiating lemma domain abs iso from the

library with DEFL eq llist and the definitions of llist abs and llist rep.

lemma domain abs iso:
fixes abs :: "’a → ’b" and rep :: "’b → ’a"
assumes DEFL: "DEFL(’b) = DEFL(’a)"
assumes abs def: "abs ≡ prj oo emb"
assumes rep def: "rep ≡ prj oo emb"
shows "rep·(abs·x) = x"



www.manaraa.com

228

theorem llist.take def:
"llist take ≡ (λn. iterate n·
(Λ g. llist abs oo ssum map·ID·(sprod map·ID·(u map·g)) oo llist rep)·⊥)"

theorem llist.take 0: "llist take 0 = ⊥"

theorem llist.take Suc: "llist take (Suc n) =
llist abs oo ssum map·ID·(sprod map·ID·(u map·(llist take n))) oo llist rep"

theorem llist.chain take: "chain llist take"

theorem llist.deflation take: "deflation (llist take n)"

Figure 6.9: Definition and basic properties of llist take function

Theorem llist rep iso is proved using a similar rule, domain rep iso, which concludes

abs·(rep·y) = y from the same assumptions.

6.6.2 Proving the reach lemma

After the new definitional Domain package code constructs the isomorphism, the

take-function component (described in Chapter 4) defines llist take, and proves

some theorems (listed in Fig. 6.9). Now the definitional Domain package needs

to prove the reach lemma, which states that the least upper bound of the chain

llist take is the identity function.

As an integrated part of the process of deriving the reach lemma, the defini-

tional Domain package also performs the necessary steps to allow indirect recur-

sion with llist in later domain definitions. This involves defining a map function

llist map, proving a few theorems about it, and adding those theorems to the ap-

propriate databases.

The overall process can be broken down into three main steps: First, define the

map function. Second, prove the identity law for the map function, by establishing

a relationship between the map function and the deflation combinator. Third,



www.manaraa.com

229

prove the reach lemma by relating the take function to the map function.

Defining the map function. The Domain package defines the map function

llist map of type (’a → ’a) → ’a llist → ’a llist.1 It generates a recursive specifica-

tion from a combination of other map functions, based on the structure of the type

one ⊕ (’a⊥ ⊗ ’a llist⊥). As with the deflation combinator, the actual fixed point

definition is handled by Fixrec-style machinery.

theorem llist map unfold:
"llist map·f = llist abs oo
ssum map·ID·(sprod map·(u map·f)·(u map·(llist map·f))) oo llist rep"

At this point the Domain package proves one of the rules needed for later

indirect-recursive definitions, which states that llist map preserves deflations. The-

orem deflation llist map is proved by fixed point induction, using the pre-existing

domain deflation rules; it is then added to the domain deflation rule database.

theorem deflation llist map [domain deflation]:
"deflation f =⇒ deflation (llist map·f)"

Proving the identity law. The other property that we must prove about

llist map is the identity law, llist map·ID = ID. To prove this property, the Do-

main package exploits the similarities in the recursive definitions of llist map and

the llist defl. The relationship between the two is formalized in a binary relation

called isodefl, which states that the given function f is “isomorphic” in some sense

to the algebraic deflation t.

definition isodefl :: "(’a::domain → ’a) ⇒ udom defl ⇒ bool"
where "isodefl f t = (cast·t = emb oo f oo prj)"

1The most general type of llist map is actually (’a → ’b) → ’a llist → ’b llist. However, the
current implementation uses the more restrictive type scheme because it works without modi-
fication for contravariant types. Generalizing the types of map functions is planned as future
work.



www.manaraa.com

230

lemma [domain isodefl]:
"isodefl (ID :: ’a → ’a) DEFL(’a)"
"Jisodefl f1 t1; isodefl f2 t2K =⇒ isodefl (cfun map·f1·f2) (cfun defl·t1·t2)"
"Jisodefl f1 t1; isodefl f2 t2K =⇒ isodefl (ssum map·f1·f2) (ssum defl·t1·t2)"
"Jisodefl f1 t1; isodefl f2 t2K =⇒ isodefl (sprod map·f1·f2) (sprod defl·t1·t2)"
"Jisodefl f1 t1; isodefl f2 t2K =⇒ isodefl (prod map·f1·f2) (prod defl·t1·t2)"
"isodefl f t =⇒ isodefl (u map·f) (u defl·t)"
"isodefl f t =⇒ isodefl (upper map·f) (upper defl·t)"
"isodefl f t =⇒ isodefl (lower map·f) (lower defl·t)"
"isodefl f t =⇒ isodefl (convex map·f) (convex defl·t)"

Figure 6.10: Extensible set of rules with the domain isodefl attribute

The Domain package maintains a database of theorems relating map functions

to their corresponding deflation combinators, using the attribute [domain isodefl].

The initial contents of this database are shown in Fig. 6.10.

Now the Domain package must prove a similar domain isodefl rule for the lazy

list type:

theorem isodefl llist [domain isodefl]:
"isodefl f t =⇒ isodefl (llist map·f) (llist defl·t)"

The proof proceeds by a form of parallel fixed point induction: After unfolding the

definitions of llist map and llist defl to reveal the underlying fixed point combina-

tors, rule parallel fix ind can be applied.

lemma parallel fix ind:
"Jadm (λx. P (fst x) (snd x)); P ⊥ ⊥; ∧x y. P x y =⇒ P (F·x) (G·y)K

=⇒ P (fix·F) (fix·G)"

After discharging the admissibility check and the base case isodefl ⊥ ⊥, the final

subgoal is nontrivial:

goal (1 subgoal):
1. ∧x y. Jisodefl f t; isodefl x yK



www.manaraa.com

231

=⇒ isodefl
(llist abs oo
ssum map·ID·(sprod map·(u map·f)·(u map·x)) oo llist rep)
(ssum defl·DEFL(one)·(sprod defl·(u defl·t)·(u defl·y)))

This last subgoal is solved by repeatedly applying rules from the domain isodefl

database, along with one extra rule to handle the occurrences of llist abs and

llist rep:

theorem llist.isodefl abs rep:
"isodefl f t =⇒ isodefl (llist abs oo f oo llist rep) t"

A similar theorem holds for any rep and abs functions defined as coercions between

isomorphic types.

Once theorem isodefl llist has been proven, the Domain package uses lemmas

isodefl DEFL imp ID and DEFL llist to derive the identity law for llist map as a

corollary.

lemma isodefl DEFL imp ID: "isodefl f DEFL(’a) =⇒ f = ID"

theorem llist map ID [domain map ID]: "llist map·ID = ID"

Once proved, llist map ID is added to the domain map ID database (introduced in

Chapter 4) for use in later domain definitions.

Relating the map and take functions. In the final step, the reach lemma can

be derived from the identity law of llist map, by taking advantage of similarities in

the definitions of llist take and llist map.

theorem llist.lub take: "(⊔n. llist take n) = ID"

The proof begins by applying transitivity with llist map ID, yielding the sub-

goal (⊔n. llist take n) = llist map·ID. After unfolding the definitions of llist take,

llist map, and the fixed point combinator fix, both sides of the equality have the

form (⊔n. iterate·f·⊥). Rewriting with domain map ID rules can finish the proof.



www.manaraa.com

232

6.6.3 User-visible changes

In HOLCF ’11, the Domain package operates in definitional mode by default. For

backward compatibility, the axiomatic mode is still available using the domain

(unsafe) command. The primary user-visible difference between the two modes

is which type classes they use: In definitional mode, type parameters and other

constructor argument types must be in class domain; newly-defined datatypes are

also made instances of the domain class. In contrast, the axiomatic mode uses

the pcpo class throughout. Even with this change, most HOLCF user theories

work without modification, because the default sort has also changed from pcpo

to domain.

The other user-visible change is the new support for indirect recursion. After

defining type ’a llist with the definitional Domain package, users can define other

datatypes using indirect recursion with llist, such as this datatype of trees:

domain ’a tree = Leaf (lazy "’a") | Node (lazy "’a tree llist")

In axiomatic mode, however, the Domain package does not generate map func-

tions, and does not configure indirect recursion to work with new datatypes.

6.7 UNPOINTED PREDOMAINS

Prior to HOLCF ’11, pcpo has always been the default sort; any type variables men-

tioned in HOLCF theories were assumed to be in class pcpo by default. However,

the class cpo, which is a superclass of pcpo that does not require a bottom element,

is also useful in some cases. Various theory developments based on HOLCF ’99

have made use of the cpo class [MNOS99, Mül98]. With HOLCF ’11 switching

from pcpo to the domain class, what should be done with these theories that use

class cpo? There is a need for an unpointed variant of class domain in HOLCF ’11.

To fill this need, we introduce a class of predomains. A predomain is a cpo that,

when lifted, becomes a representable domain. More precisely, while ’a::domain



www.manaraa.com

233

means that type ’a can be embedded into udom, ’a::predomain means that type ’a⊥
can be embedded into udom⊥.

class predomain syn = cpo +
fixes liftemb :: "’a⊥ → udom⊥"
fixes liftprj :: "udom⊥ → ’a⊥"
fixes liftdefl :: "’a itself ⇒ (udom⊥) defl"

class predomain = predomain syn +
assumes predomain ep: "ep pair liftemb liftprj"
assumes cast liftdefl: "cast·(liftdefl TYPE(’a)) = liftemb oo liftprj"

We also define LIFTDEFL(’a) as a convenient abbreviation for liftdefl TYPE(’a).

Shortly we will redefine the domain type class to make it into a subclass of

predomain. But in order to do that, we need a function for creating deflations on

udom⊥ out of deflations on udom.

definition liftdefl of :: "udom defl → (udom⊥) defl"
where "liftdefl of = defl fun1 ID ID u map"

lemma cast liftdefl of: "cast·(liftdefl of·t) = u map·(cast·t)"

We now extend the domain type class by adding predomain syn as a superclass,

along with a few class assumptions stating that liftemb, liftprj, and liftdefl are

defined in a standard way.

class domain = predomain syn + pcpo +
fixes emb :: "’a → udom"
fixes prj :: "udom → ’a"
fixes defl :: "’a itself ⇒ udom defl"
assumes ep pair emb prj: "ep pair emb prj"
assumes cast DEFL: "cast·(defl TYPE(’a)) = emb oo prj"
assumes liftemb eq: "liftemb = u map·emb"
assumes liftprj eq: "liftprj = u map·prj"
assumes liftdefl eq: "liftdefl TYPE(’a) = liftdefl of·(defl TYPE(’a))"

It is then a simple matter to prove the subclass relationship domain ⊆ predomain,

by showing that the definitions of liftemb, liftprj, and liftdefl specified by the domain



www.manaraa.com

234

class satisfy the predomain axioms.

Domain class instance for lifted cpo. Now we define a new domain class

instance for the lifted cpo type ’a⊥, so that the type argument ’a only needs to be a

predomain. To implement this class instance, we need a new variant of the deflation

combinator u defl whose argument type is (udom⊥) defl instead of udom defl.

definition u liftdefl :: "(udom⊥) defl → udom defl"
where "u liftdefl = defl fun1 u emb u prj ID"

lemma cast u liftdefl: "cast·(u liftdefl·t) = u emb oo cast·t oo u prj"

Here u emb :: udom⊥ → udom and u prj :: udom → udom⊥ are the ep-pair provided

by the universal domain library—the same functions are used to define u defl. The

two deflation combinators are related by the following theorem:

lemma u liftdefl liftdefl of: "u liftdefl·(liftdefl of·t) = u defl·t"

This means that although DEFL(’a⊥) = u liftdefl·LIFTDEFL(’a) by definition, it is

also still equal to u defl·DEFL(’a) for any ’a in class domain, just as it was defined

before.

instantiation u :: (predomain) domain
begin
definition "(emb :: ’a⊥ → udom) = u emb oo liftemb"
definition "(prj :: udom → ’a⊥) = liftprj oo u prj"
definition "defl ( :: (’a⊥) itself) = u liftdefl·LIFTDEFL(’a)"
...

end

The functions liftemb, liftprj, and liftdefl are all defined exactly as required by the

domain class axioms. The other domain class axioms about emb, prj, and defl follow

from the predomain class axioms on type ’a.

Predomain class instance for cartesian product. The goal here is to create a

predomain instance for products, such that the product of two predomains is again



www.manaraa.com

235

a predomain. To do this, we must create an ep-pair from type (’a × ’b)⊥ into

udom⊥. To define the embedding and projection, we make use of an isomorphism

between type (’a × ’b)⊥ and the strict product ’a⊥ ⊗ ’b⊥.

definition encode prod u :: "(’a × ’b)⊥ → ’a⊥ ⊗ ’b⊥"
where "encode prod u = (Λ(up·(x, y)). (:up·x, up·y:))"

definition decode prod u :: "’a⊥ ⊗ ’b⊥ → (’a × ’b)⊥"
where "decode prod u = (Λ(:up·x, up·y:). up·(x, y))"

The embedding can now be done in multiple steps: Starting with a value of

type (’a × ’b)⊥, first apply encode prod u to get a strict pair of type ’a⊥ ⊗ ’b⊥.

Second, map liftemb over each component of the strict pair to get another pair

of type udom⊥ ⊗ udom⊥. Third, apply decode prod u to convert this to type

(udom × udom)⊥. Finally, map the embedding function for type udom × udom

over the lifted cpo to get a value of type udom⊥. The projection uses the same

process in reverse. We then define the deflation combinator prod liftdefl to corre-

spond with the composition of these embedding and projection functions.

definition prod liftdefl :: "(udom⊥) defl → (udom⊥) defl → (udom⊥) defl"
where "prod liftdefl = defl fun2 (u map·prod emb oo decode prod u)
(encode prod u oo u map·prod prj) sprod map"

lemma cast prod liftdefl:
"cast·(prod liftdefl·a·b) = (u map·prod emb oo decode prod u) oo
sprod map·(cast·a)·(cast·b) oo (encode prod u oo u map·prod prj)"

instantiation prod :: (predomain, predomain) predomain
begin
definition "liftemb = (u map·prod emb oo decode prod u)

oo (sprod map·liftemb·liftemb oo encode prod u)"
definition "liftprj = (decode prod u oo sprod map·liftprj·liftprj)

oo (encode prod u oo u map·prod prj)"
definition "liftdefl ( :: (’a × ’b) itself) =

prod liftdefl·LIFTDEFL(’a)·LIFTDEFL(’b)"
instance ...

end



www.manaraa.com

236

Although the definitions may look complex, the predomain instance proof is still

relatively simple. Showing ep pair liftemb liftprj merely requires a few extra appli-

cations of rules from Fig. 6.1.

instantiation prod :: (domain, domain) domain
begin
definition "(emb :: ’a × ’b → udom) = prod emb oo prod map·emb·emb"
definition "(prj :: udom → ’a × ’b) = prod map·prj·prj oo prod prj"
definition "defl ( :: (’a × ’b) itself) = prod defl·DEFL(’a)·DEFL(’b)"
instance ...

end

On the other hand, the domain instance proof requires more work than one might

expect. The reason is that unlike any other domain class instantiation, the prod-

uct type does not have liftemb, liftprj, and liftdefl defined exactly as specified by

the domain class axioms. Fortunately, liftemb = u map·emb and liftprj = u map·prj

can be proved without too much trouble by case analysis on their inputs. Also,

LIFTDEFL(’a × ’b) = liftdefl of·DEFL(’a × ’b) can be proved using the injectivity

of cast, by showing that cast·LIFTDEFL(’a × ’b) = cast·(liftdefl of·DEFL(’a × ’b)).

Other class instances. Other predomain class instances can be defined in a

similar way to the product type. For example, with the Isabelle/HOL disjoint sum

type, an isomorphism can be defined between type (’a + ’b)⊥ and the strict sum

’a⊥ ⊕ ’b⊥. This can be used to show that the disjoint sum of two predomains is

again a predomain.

Another isomorphism that was noted back in Chapter 2 is between type ’a discr⊥
and ’a lift. This is used to make ’a discr an instance of class predomain, for any

countable type ’a.

The last new class instance of note is for the continuous function type. To show

that type ’a → ’b is in class pcpo, ’b must be a pcpo, but ’a only needs to be in

class cpo. How can we get a similar instance for the domain and predomain classes?



www.manaraa.com

237

In order to prove this class instance, we can define a type ’a →! ’b, which is the

strict function space from ’a to ’b.

pcpodef (open) (’a, ’b) sfun (infixr "→!" 0) = "{f :: ’a → ’b. f·⊥ = ⊥}"

For an unpointed ’a and pointed ’b, type ’a → ’b is isomorphic to the strict function

type ’a⊥ →! ’b. This can then be used to obtain the desired class instance for

continuous functions.

Domain package support for predomains. Some minor changes to the Do-

main package were necessary to add support for predomains. Two new features

were implemented. First, lazy constructor arguments are now permitted to be

in class predomain. (Strict constructor arguments are still required to be in class

domain.) For example, we can define the following type of lazy lists of natural

numbers, where the elements have the unpointed type nat discr:

domain natlist = nil | cons (lazy "nat discr") (lazy "natlist")

The second feature is that datatypes can now have type parameters in class

predomain. For example, we can define a variation of the lazy list datatype that

allows unpointed predomain element types:

domain (’a::predomain) ulist = unil | ucons (lazy "’a") (lazy "’a ulist")

Note that the constructor argument ’a is lazy, as it must be for the definition to

be accepted.

To support these new features, the part of the Domain package that defines

deflation combinators had to be updated. For domains with unpointed type param-

eters, the type of the deflation combinator is different: For example, llist defl had

type udom defl → udom defl, while ulist defl has type (udom⊥) defl → udom defl.

Because the domain defl simps rules are used to generate deflation combinator def-

initions, we must also declare a few more rules with this attribute (Fig. 6.11).



www.manaraa.com

238

lemma [domain defl simps]:
"DEFL(’a⊥) = u liftdefl·LIFTDEFL(’a)"
"LIFTDEFL(’a::domain) = liftdefl of·DEFL(’a)"
"u liftdefl·(liftdefl of·t) = u defl·t"
"LIFTDEFL(’a × ’b) = prod liftdefl·LIFTDEFL(’a)·LIFTDEFL(’b)"
"DEFL((’a::predomain) → ’b) = DEFL(’a⊥ →! ’b)"

Figure 6.11: Additional domain defl simps rules for predomains

lemma [domain isodefl]:
"isodefl’ (ID :: ’a → ’a) LIFTDEFL(’a::predomain)"
"isodefl f t =⇒ isodefl’ f (liftdefl of·t)"
"isodefl’ f t =⇒ isodefl (u map·f) (u liftdefl·t)"
"Jisodefl’ f1 t1; isodefl’ f2 t2K =⇒ isodefl’ (prod map·f1·f2) (prod liftdefl·t1·t2)"

Figure 6.12: Additional domain isodefl rules for predomains

theorem ulist defl unfold: "ulist defl·t =
ssum defl·DEFL(one)·(sprod defl·(u liftdefl·t)·(u defl·(ulist defl·t)))"

The Domaindef package also needs modification to handle the changed defini-

tion of the domain class. Lemma typedef domain class gets three extra assumptions,

corresponding to the class axioms liftemb eq, liftprj eq, and liftdefl eq; Domaindef

defines these constants accordingly for each instance.

For the proofs of the identity law for map functions, we must define a variant

of the isodefl relation for use with the predomain class. We also extend the initial

set of domain isodefl rules with a few new ones about isodefl’, shown in Fig. 6.12.

definition isodefl’ :: "(’a::predomain → ’a) ⇒ (udom⊥) defl ⇒ bool"
where "isodefl’ f t ←→ cast·t = liftemb oo u map·f oo liftprj"

The domain isodefl rules for new domains must mention this variant if they

have any predomain type parameters. For example, consider the ’a ulist type:



www.manaraa.com

239

theorem isodefl ulist [domain isodefl]:
"isodefl’ f t =⇒ isodefl (ulist map·f) (ulist defl·t)"

Perhaps surprisingly, these few changes listed here are the only ones necessary

to support the new predomain features. All of the other proof scripts in the rest

of the Domain package continue to work without modification in the presence of

predomains.

6.8 RELATED WORK AND CONCLUSION

An early example of the purely definitional approach to defining datatypes is de-

scribed by Melham, in the context of the HOL theorem prover [Mel89]. Mel-

ham defines a type (α)Tree of labelled trees, from which other recursive types are

defined as subsets. The design is similar in spirit to the one presented in this

chapter—types are modeled as values, and abstract properties that characterize

each datatype are proved as theorems. The main differences are that Melham

uses ordinary types instead of bifinite domains, and ordinary subsets instead of

deflations.

The Isabelle/HOL datatype package uses a design very similar to the HOL

system. The type α node, which was originally used for defining recursive types in

Isabelle/HOL, was introduced by Paulson [Pau97]; it is quite similar to the HOL

system’s (α)Tree type. E. Gunter later extended the labelled tree type of HOL to

support datatypes with arbitrary branching [Gun94]. Berghofer and Wenzel used

a similarly extended type to implement the current version of Isabelle’s datatype

package [BW99].

Agerholm used a variation of Melham’s labelled trees to define lazy lists and

other recursive domains in the HOL-CPO system [Age94]. Agerholm’s cpo of

infinite trees can represent arbitrary polynomial datatypes as subsets; however,

negative recursion is not supported.

Recent work by Benton, et al. uses the colimit construction to define recursive



www.manaraa.com

240

domains in Coq [BKV09]. Like the universal domain described in this chapter,

their technique can handle both positive and negative recursion. Using colimits

avoids the need for a universal domain, but it requires a logic with dependent

types; the construction will not work in ordinary higher-order logic.

On the theoretical side, various publications by C. Gunter [Gun85, Gun87,

Gun92] were the primary sources of ideas for the HOLCF universal domain con-

struction. The construction of the sequence of increments in Section 6.4 is just as

described by Gunter [Gun87, §5]. However, the use of ideal completion is original—

Gunter defines the universal domain using a colimit construction instead. Given

a cpo D, Gunter defines a type D+ that can embed any increment from D to

D′. The universal domain is then defined as a solution to the domain equation

D = D+. The construction of D+ is similar to our basis datatype B, except that

it is non-recursive and does not include serial numbers.

Another universal domain with similar features has been described by D. Scott

[GS90, Sco08]. The domain U is defined by ideal completion, where the basis is a

countable free boolean algebra minus its top element. It is proved to be a universal

domain for the class of bounded complete algebraic cpos (also commonly known as

Scott domains) which is a subclass of the bifinite cpos. Compared to the universal

bifinite domain udom, its basis has a much simpler definition, and would have been

significantly easier to formalize; however, bounded completeness is not preserved

by the convex powerdomain.

While the literature only claims that the domain U can represent bounded

complete cpos, it is actually possible that it could represent arbitrary bifinite cpos

as well. The construction described in this chapter is based on encoding increments

of posets, where the new element 〈i, a, S〉 with serial number i is inserted above the

element a and below each element in the finite set S. In the free boolean algebra

with generators (xi)i∈ω, we could encode the value 〈i, a, S〉 as (xiua)t(¬xiu(
d
S)).

As long as each inserted value uses a distinct serial number, this encoding appears



www.manaraa.com

241

to satisfy the appropriate ordering relations. Exploring this idea in more detail is

reserved for future work.

Earlier versions of portions of this chapter have been published previously

[Huf09a]. The formalization of the universal domain in HOLCF ’11 differs sightly

from that earlier presentation in its treatment of the chain of approx functions: Pre-

viously, approx was an overloaded function of the bifinite type class, and udom emb

and udom prj were polymorphic functions in the same type class. In contrast, the

new version uses a locale to fix the chain of approx functions.

In summary, the HOLCF ’11 universal domain library provides the basic in-

frastructure upon which the new Domain package can construct general recursive

datatypes in a purely definitional way. It provides a type udom, along with the

means to construct an ep-pair into udom from any other bifinite cpo. Such ep-pairs

are a prerequisite for building deflation combinators that represent type construc-

tors. In turn, the Domain package now uses deflation combinators to define

recursive datatypes, proving the type isomorphism and induction rules without

generating axioms.



www.manaraa.com

242

Chapter 7

CASE STUDY AND CONCLUSION: VERIFYING MONADS

7.1 INTRODUCTION

The primary claim of this thesis is that HOLCF ’11 offers a superior environ-

ment for program verification—specifically, we claim that HOLCF ’11 provides

an unprecented combination of expressiveness, automation, and confidence. Ex-

pressiveness means that users can accurately and concisely specify the datatypes,

functions, and properties that they want to reason about. The new and improved

definition packages in HOLCF ’11 make it easy to translate a wider variety of

recursive datatype and function definitions than ever before. Automation means

that users can avoid expending effort on trivial proof details, and focus on the in-

teresting parts of more difficult proofs. Theorems that are straightforward to prove

on paper (and also some that are not so easy on paper) have almost completely

automatic proofs in HOLCF ’11. The new proof automation also helps users to

prove large, complex theorems with minimal effort. Confidence means that there

is a strong argument for believing in the correctness of the system—HOLCF ’11

provides confidence by adhering to a purely definitional approach, and avoiding

new axioms.

The goal of this chapter is to provide evidence for these claims. The level of

confidence has already been established in the previous chapters, which describe the

purely definitional implementation of HOLCF ’11. To measure the expressiveness

and automation available in HOLCF ’11, we consider case studies where we prove

properties about specific functional programs. Finally, to support the claim that



www.manaraa.com

243

the combination of these qualities in HOLCF ’11 is unprecedented, we compare

HOLCF ’11 with some earlier approaches to program verification, evaluating them

along the axes of expressiveness, automation, and confidence.

For the case studies in this chapter, we examine some monad types of the kind

often used in Haskell programming. Recall that monads are typically used to imple-

ment computations with side-effects, such as exceptions or mutable state—different

monad types provide different kinds of side-effects. Every monad is equipped with

a return operation, which returns a value without side-effects; and a bind opera-

tion, which sequences computations by feeding the result of one computation into

the next. These operations are expected to satisfy a set of monad laws. Also, indi-

vidual monads may have other operations that are expected to satisfy additional

laws. For example, a mutable-state monad would have read and write operations

that should satisfy some simple properties.

The example monads used in this chapter range from simple to complex: First

we have the basic type of lazy lists, which is ubiquitous in Haskell programming.

Later on we consider a much more complex monad with multiple kinds of side-

effects, that is useful for modeling concurrency. Its definition is built up from

simpler monads in stages, using monad transformers [Mog89, LHJ95]. The defini-

tions and proofs for lazy lists serve primarily to show how well HOLCF ’11 handles

easy verification tasks, while the concurrency monad is intended to test the full

extent of HOLCF ’11’s capabilities.

In addition to verifying the monad laws for each type, we also define and verify

some other type-specific operations. For lazy lists, we formalize the Haskell func-

tions repeat, which generates infinite lists; and zipWith, which applies a function

pointwise to two lists. For the concurrency monad, we formalize an operation

that nondeterministically interleaves two computations. Each of these operations

satisfies a set of laws that comes from the theory of applicative functors [MP08].



www.manaraa.com

244

Contributions. The case studies here primarily serve to demonstrate the tools

described in the earlier chapters, but they introduce some new technical contribu-

tions as well. Some new proof techniques have been developed to help automate

some of the proofs presented in this chapter:

• Parallel fixed point induction using depth parameters (§7.2.5)

• Principle of map-induction for indirect-recursive datatypes (§7.3.6)

Overview. The remainder of this chapter is organized as follows: Section 7.2

covers the lazy list monad case study. After defining the datatype and list op-

erations (§7.2.1), we verify the monad laws (§7.2.2). Next we consider the ap-

plicative functor instance with repeat and zipWith (§7.2.3) and their correctness

proofs (§7.2.4). One law in particular requires more advanced coinductive proof

techniques; we evaluate some standard methods, and compare them with a new

technique using induction over depth parameters (§7.2.5).

Section 7.3 discusses the development of the concurrency monad. The concur-

rency monad is built up using a sequence of standard monads and monad trans-

formers (§7.3.1–7.3.4), ultimately being defined by the Domain package (§7.3.5).

After developing the map-induction principle for reasoning about the concurrency

monad (§7.3.6), we verify the monad operations (§7.3.7) and the nondeterministic

interleaving operator (§7.3.8).

Section 7.5 contains a survey of related work, where we compare the attributes

of HOLCF ’11 with those of various earlier systems and approaches to program

verification. Finally, Sec. 7.6 gives a summary and some closing remarks.

7.2 THE LAZY LIST MONAD

In this section, we formalize a lazy list type in HOLCF, which models the standard

Haskell list type. We also define the functor and monad operations on the lazy list

type, corresponding to the standard Haskell definitions of fmap, return and (>>=)



www.manaraa.com

245

class Functor f where
fmap :: (a -> b) -> f a -> f b

fmap id v = v -- Identity
fmap g (fmap h v) = fmap (g . h) v -- Composition

Figure 7.1: Haskell class Functor, with functor laws

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

(return x >>= g) = g x -- Left unit
(v >>= return) = v -- Right unit

((v >>= g) >>= h) = (v >>= (\x -> g x >>= h)) -- Associativity

Figure 7.2: Haskell class Monad, with monad laws

for lists, and prove the standard laws about them. The definitions and laws for

the functor and monad classes are shown in Figs. 7.1 and 7.2; the class instances

for lists are given in Fig. 7.3.

HOLCF ’11 aims to make easy proofs automatic, and hard proofs possible.

These properties of Haskell list operations are examples of easy proofs—the goal

of this section is to illustrate how simple it is to formalize the definitions in HOLCF,

and how easy and automated the proofs can be.

7.2.1 Datatype and function definitions

The first step in formalizing the Haskell list monad in HOLCF is to define the

type using the Domain package. We use the name llist for lazy lists in HOLCF,

to avoid a clash with the existing Isabelle/HOL list datatype.

domain ’a llist = LNil | LCons (lazy "’a") (lazy "’a llist")



www.manaraa.com

246

data [a] = [] | a : [a]

instance Functor [] where
fmap g [] = []
fmap g (x : xs) = g x : fmap g xs

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

instance Monad [] where
return x = [x]
[] >>= k = []
(x : xs) >>= k = k x ++ (xs >>= k)

Figure 7.3: Haskell Functor and Monad instances for lazy lists

Among the many theorems generated by this call to the Domain package, one of

the most important is llist.induct: It is used in every proof that involves induction

over lazy lists.

theorem llist.induct:
"Jadm P; P ⊥; P LNil; ∧x xs. P xs =⇒ P (LCons·x·xs)K =⇒ P ys"

We formalize the Haskell list functions fmap, return, (++), and (>>=) in

HOLCF as mapL, unitL, appendL, and bindL, respectively (see Fig. 7.4). Each

of them is defined using Fixrec, except for unitL; because unitL does not need

pattern matching or recursion, a simple definition suffices. In addition to the

defining equations, we also generate strictness rules for each function. Each strict-

ness rule is proved by a single application of the fixrec simp method (introduced in

Chapter 3).



www.manaraa.com

247

fixrec mapL :: "(’a → ’b) → ’a llist → ’b llist"
where "mapL·f·LNil = LNil"
| "mapL·f·(LCons·x·xs) = LCons·(f·x)·(mapL·f·xs)"

definition unitL :: "’a → ’a llist"
where "unitL = (Λ x. LCons·x·LNil)"

fixrec appendL :: "’a llist → ’a llist → ’a llist"
where "appendL·LNil·ys = ys"
| "appendL·(LCons·x·xs)·ys = LCons·x·(appendL·xs·ys)"

fixrec bindL :: "’a llist → (’a → ’b llist) → ’b llist"
where "bindL·LNil·f = LNil"
| "bindL·(LCons·x·xs)·f = appendL·(f·x)·(bindL·xs·f)"

lemma mapL strict [simp]: "mapL·f·⊥ = ⊥"
by fixrec simp

lemma appendL strict [simp]: "appendL·⊥·ys = ⊥"
by fixrec simp

lemma bindL strict [simp]: "bindL·⊥·f = ⊥"
by fixrec simp

Figure 7.4: HOLCF formalization of functor and monad operations for lazy lists



www.manaraa.com

248

7.2.2 Verifying the functor and monad laws

With all the operations defined and the rewrite rules added to the simplifier, we

can proceed to prove the functor and monad laws. The proofs of both functor

laws for lazy lists are completely automatic: Just apply induction followed by

simplification.

lemma mapL ID: "mapL·ID·xs = xs"
by (induct xs, simp all)

lemma mapL mapL: "mapL·f·(mapL·g·xs) = mapL·(f oo g)·xs"
by (induct xs, simp all)

The right unit law for the lazy list monad has a similar automatic proof, as long

as we tell the simplifier to unfold the definition of unitL.

lemma bindL unitL right: "bindL·xs·unitL = xs"
by (induct xs, simp all add: unitL def)

The proofs of the other two monad laws are slightly more difficult. While they

still have a high level of automation, each proof requires one or more lemmas. We

will consider the left unit law first.

The left unit law for the lazy list monad requires that bindL·(unitL·x)·g = g·x.

If we unfold the definition of unitL and simplify, we are left with the subgoal

appendL·(g·x)·LNil = g·x. To proceed, we must back up and prove a lemma saying

that appending LNil on the right leaves a list unchanged. With the help of lemma

appendL LNil right, the left unit law can then be proved automatically.

lemma appendL LNil right: "appendL·xs·LNil = xs"
by (induct xs, simp all)

lemma bindL unitL: "bindL·(unitL·x)·g = g·x"
by (simp add: unitL def appendL LNil right)

Finally we consider the associativity law, which asserts that bindL·(bindL·xs·g)·h

= bindL·xs·(Λ x. bindL·(g·x)·h). If we perform induction on xs, the simplifier can



www.manaraa.com

249

automatically solve all subgoals but one: In the LCons case, the left hand side

bindL·(bindL·(LCons·x·xs)·g)·h reduces to bindL·(appendL·(g·x)·(bindL·xs·g))·h, but

then we get stuck: We need to prove a lemma to show that bindL distributes over

appendL.

We can try to prove bindL·(appendL·xs·ys)·g = appendL·(bindL·xs·g)·(bindL·ys·g)

as a lemma, by induction on xs. As before, simplification discharges everything but

the LCons·x·xs case: After simplifying and rewriting with the inductive hypothesis,

the left-hand side reduces to appendL·(g·x)·(appendL·(bindL·xs·g)·(bindL·ys·g)). The

right-hand side is similar, but has the appends grouped the other way: appendL·

(appendL·(g·x)·(bindL·xs·g))·(bindL·ys·g). This suggests yet another lemma: We

must prove that appendL is associative.

At last, the associativity of appendL can be proved directly by induction on xs,

without needing any more lemmas. After appendL appendL, we can now give fully

automatic proofs for bindL appendL and bindL bindL, where each theorem uses the

previous one as a rewrite rule.

lemma appendL appendL:
"appendL·(appendL·xs·ys)·zs = appendL·xs·(appendL·ys·zs)"

by (induct xs, simp all)

lemma bindL appendL:
"bindL·(appendL·xs·ys)·g = appendL·(bindL·xs·g)·(bindL·ys·g)"

by (induct xs, simp all add: appendL appendL)

lemma bindL bindL: "bindL·(bindL·xs·g)·h = bindL·xs·(Λ x. bindL·(g·x)·h)"
by (induct xs, simp all add: bindL appendL)

7.2.3 Applicative functors and laws for zip

The functor and monad operations, fmap, return and (>>=), are not the only

functions on lazy lists with standard algebraic laws that we ought to verify. The

applicative functors are another algebraic class of which lazy lists can be made an



www.manaraa.com

250

class Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b -- left-associative

pure id <*> v = v -- Identity
pure (.) <*> u <*> v <*> w = u <*> (v <*> w) -- Composition

pure g <*> pure x = pure (g x) -- Homomorphism
u <*> pure y = pure (\g -> g y) <*> u -- Interchange

Figure 7.5: Haskell class Applicative, with applicative functor laws

instance. The particular instance discussed here is based on the standard Haskell

functions repeat and zipWith; in this section we prove that these operations

satisfy the appropriate applicative functor laws.

The class of applicative functors for Haskell was introduced recently by McBride

and Paterson [MP08]. An applicative functor is more than a functor, but less than

a monad: Applicative functors support sequencing of effects, but not binding. The

class is defined in Haskell as shown in Fig. 7.5. It fixes two functions: First, pure

lifts an ordinary value into the applicative functor type; it denotes a computation

with no effects, much like return for monads. Second, the left-associative infix

operator (<*>) takes two computations, respectively yielding a function and an

argument, and applies them together, sequencing their effects. All reasonable

implementations of pure and (<*>) are expected to satisfy the four laws listed in

Fig. 7.5.1

There is more than one way to instantiate class Applicative for the lazy list

type. One possibility, which works for any monad, is to define pure and (<*>) in

terms of the monadic operations return and (>>=), as shown below.

1In the composition law, (.) :: (b -> c) -> (a -> b) -> a -> c denotes function
composition.



www.manaraa.com

251

repeat :: a -> [a]
repeat x = x : repeat x

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x : xs) (y : ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

instance Applicative [] where
pure x = repeat x
fs <*> xs = zipWith id fs xs

Figure 7.6: Zip-style applicative functor instance for lazy lists

instance Applicative [] where
pure x = return x
fs <*> xs = fs >>= (\f -> xs >>= (\x -> return (f x)))

With these definitions, the four applicative functor laws can be proven by rewriting

with the monad laws. An applicative functor instance can be derived from any

monad in the same way. In terms of demonstrating proof techniques in HOLCF,

this instantiation is rather unpromising.

For our purposes, a different instantiation using repeat and zipWith offers

a more interesting verification challenge for HOLCF ’11. The full code for the

applicative functor instance is shown in Fig. 7.6. In this version, sequencing is

done by taking a list of functions and a list of arguments, and applying them

pointwise. The “effect” being sequenced here is essentially the dependence of

values on their positions in the list. A pure computation (with no such “effect”)

is then represented as an infinite list whose elements are all the same.

7.2.4 Verifying the applicative functor laws

As with the functor and monad laws, the first step in verifying the applicative laws

is to define the operations using Fixrec. We define the HOLCF functions repeatL



www.manaraa.com

252

and zipL following the Haskell definitions of repeat and zipWith.

fixrec repeatL :: "’a → ’a llist"
where [simp del]: "repeatL·x = LCons·x·(repeatL·x)"

fixrec zipL :: "(’a → ’b → ’c) → ’a llist → ’b llist → ’c llist"
where "zipL·f·(LCons·x·xs)·(LCons·y·ys) = LCons·(f·x·y)·(zipL·f·xs·ys)"
| (unchecked) "zipL·f·xs·ys = LNil"

There are a couple of annotations on these definitions that require explanation:

First, because repeatL does not pattern match on a constructor, its defining equa-

tion would loop if used as a rewrite rule; for this reason, we declare it with [simp del]

to remove it from the simplifier. In proofs, we must apply the rule repeatL.simps

manually as needed. Second, the specification of zipL includes a catch-all case that

returns LNil. This equation is not provable as a theorem, because it only applies

when the other equation fails to match; thus we must declare it as (unchecked).

The theorem list zipL.simps then only includes the first equation.

So far, Fixrec has only provided one rewrite rule about zipL. Doing proofs

about zipL will require a few more, which we get using fixrec simp.

lemma zipL extra simps [simp]:
"zipL·f·⊥·ys = ⊥"
"zipL·f·LNil·ys = LNil"
"zipL·f·(LCons·x·xs)·⊥ = ⊥"
"zipL·f·(LCons·x·xs)·LNil = LNil"

by fixrec simp+

We define the HOLCF infix operator � to represent the Haskell operator (<*>)

on lazy lists. Defining it as a syntactic abbreviation means that we can reason

about it using the lemmas we already have for zipL.

abbreviation apL (infixl "�" 70)
where "fs � xs ≡ zipL·ID·fs·xs"

With these definitions, we are now ready to consider the proofs of the applica-

tive functor laws. We will start with the identity law, where we must prove that



www.manaraa.com

253

repeatL·ID � xs = xs. Induction on xs yields the following subgoals:

goal (4 subgoals):
1. adm (λa. repeatL·ID � a = a)
2. repeatL·ID � ⊥ = ⊥
3. repeatL·ID � LNil = LNil
4. ∧a xs. repeatL·ID � xs = xs =⇒ repeatL·ID � LCons·a·xs = LCons·a·xs

The admissibility condition can be solved automatically by simp. But in the other

goals, the rewrites we have for zipL do not apply yet. To use the rewrite rules

we have for zipL, we must first manually unfold repeatL·ID one step, and then call

simp. In this way we can solve all the remaining goals.

Alternatively, we can improve automation by defining some additional rewrite

rules for zipL and repeatL. If one argument to zipL is repeatL, and the other is a

constructor, we can unfold repeatL to make progress.

lemma zipL repeatL simps [simp]:
"zipL·f·(repeatL·x)·⊥ = ⊥"
"zipL·f·(repeatL·x)·LNil = LNil"
"zipL·f·(repeatL·x)·(LCons·y·ys) = LCons·(f·x·y)·(zipL·f·(repeatL·x)·ys)"
"zipL·f·(LCons·x·xs)·(repeatL·y) = LCons·(f·x·y)·(zipL·f·xs·(repeatL·y))"

by (subst repeatL.simps, simp)+

With these new rewrite rules in place, the proof of the identity law is now com-

pletely automatic, by induction followed by simplification.

lemma llist identity: "repeatL·ID � xs = xs"
by (induct xs, simp all)

The zipL repeatL simps rules also make it possible to prove the interchange law

with a similar level of automation:

lemma llist interchange: "fs � repeatL·x = repeatL·(Λ f. f·x) � fs"
by (induct fs, simp all)

The composition law repeatL·cfcomp � fs � gs � xs = fs � (gs � xs) can also be

proven by induction, although the proof is complicated by the fact that it mentions



www.manaraa.com

254

not one, but three list variables. In the proof script below, we induct over the first

list, fs. The ⊥ and LNil cases can be solved automatically, but the LCons case

requires extra case analyses on gs and xs. The arbitrary: gs xs option generalizes

the inductive hypothesis by universally quantifying over the other two lists; this

is because we will need the inductive hypothesis to apply not to gs and xs, but to

the tails of those lists.

lemma llist composition: "repeatL·cfcomp � fs � gs � xs = fs � (gs � xs)"
by (induct fs arbitrary: gs xs, simp all,

case tac gs, simp all, case tac xs, simp all)

7.2.5 Coinductive proof methods

Of all the four applicative functor laws for lazy lists, the most challenging to prove

is the homomorphism law, repeatL·f � repeatL·x = repeatL·(f·x). The technique of

induction that we used for the other three laws will not work here—the homomor-

phism law does not mention any list variables to induct over! Instead, we must rely

on coinductive proof methods: While inductive methods reason about the struc-

ture of input to functions, coinductive methods consider the structure of the output.

Various such proof methods are surveyed by Gibbons and Hutton [GH05]; we will

consider a few of those methods here, as applied to proving the homomorphism

law in HOLCF ’11.

First we consider a proof method that Gibbons and Hutton call the approx-

imation lemma [HG01, GH05]; in HOLCF it is known as the take lemma. This

method uses the function llist take :: nat ⇒ ’a llist → ’a llist generated by the Do-

main package, which satisfies the following specification:

theorem llist.take rews:
"llist take 0 = ⊥"
"llist take (Suc n)·LNil = LNil"
"llist take (Suc n)·(LCons·x·xs) = LCons·x·(llist take n·xs)"



www.manaraa.com

255

The take lemma lets us prove that two lazy lists are equal, if we can show that

llist take n can never distinguish them for any n.

theorem llist.take lemma: "(∧n. llist take n·x = llist take n·y) =⇒ x = y"

In practice, an application of llist.take lemma is usually followed by induction on n.

If we take this approach to proving the homomorphism law, we are then left with

the following two subgoals:

goal (2 subgoals):
1. llist take 0·(repeatL·f � repeatL·x) = llist take 0·(repeatL·(f·x))
2. ∧n. llist take n·(repeatL·f � repeatL·x) = llist take n·(repeatL·(f·x)) =⇒
llist take (Suc n)·(repeatL·f � repeatL·x) = llist take (Suc n)·(repeatL·(f·x))

The first subgoal can be solved automatically, because both sides simplify to ⊥.

However, before the second subgoal can be simplified further, we must manually

unfold by one step each of the three applications of repeatL. After these manual

steps, the simplifier can finish the proof. All together, we get a proof script with

about seven steps.

Perhaps a different proof method can yield better automation? The next

method we will try is fixed point induction, which reasons about the structure

of recursive calls of a function (repeatL in this case). As described in Chapter 3, a

fixed point induction rule is generated for each function defined by Fixrec.

theorem repeatL.induct:
"Jadm P; P ⊥; ∧r. P r =⇒ P (Λ x. LCons·x·(r·x))K =⇒ P repeatL"

We can prove the homomorphism law repeatL·f � repeatL·x = repeatL·(f·x) using

repeatL.induct. A tempting idea is to try inducting simultaneously over all three

occurrences of repeatL in parallel, but unfortunately this does not work: Each

occurrence of repeatL has a different type, and the predicate P in repeatL.induct

can only abstract over one of them at a time. Next we might try to induct over a

single function in the original goal, but we hit another problem: For the base case,



www.manaraa.com

256

exactly one occurrence of repeatL will be replaced with ⊥, leaving an unprovable

goal.

We can still make progress if we apply an antisymmetry rule before trying fixed

point induction. In each of the two subgoals, we can induct over an occurrence of

repeatL on the left-hand side of the inequality, yielding provable base cases.

goal (2 subgoals):
1. repeatL·f � repeatL·x v repeatL·(f·x)
2. repeatL·(f·x) v repeatL·f � repeatL·x

Because we are only inducting over one occurrence of repeatL at a time, this means

that in the inductive step, the other occurrences of repeatL will not be unfolded

for us; we will have to do this manually. Ultimately we end up with a completed

proof script that is even longer and more complicated than the take lemma proof.

Things would be much easier if we could do simultaneous fixed point induction!

This would free us from having to do the antisymmetry step and the manual

unfolding steps, yielding a much shorter, more automated proof. It turns out that

there is a way to accomplish this, if we are willing to modify our function definitions

a bit.

The idea is to augment repeatL with a new parameter that places a limit on the

recursion depth. We can then redefine the original repeatL in terms of the depth-

limited version by calling it with an infinite depth limit. To model the (possibly

infinite) depth values, we define a domain depth with a single lazy constructor DSuc

representing successor; ⊥ represents zero. We use Fixrec to define unlimited as

the fixed point of DSuc.

domain depth = DSuc (lazy depth)

fixrec unlimited :: "depth"
where [simp del]: "unlimited = DSuc·unlimited"

Next we define repeatL depth as a depth-limited version of repeatL. Recursive

calls decrement the depth limit by one. We can use fixrec simp to prove that



www.manaraa.com

257

repeatL depth is strict in its first argument, which assures that the recursion stops

when the depth limit reaches zero (i.e., ⊥).

fixrec repeatL depth :: "depth → ’a → ’a llist"
where "repeatL depth·(DSuc·n)·x = LCons·x·(repeatL depth·n·x)"

We define repeatL’ as the depth-unlimited version of repeatL depth. Using the

rewrites for unlimited and repeatL depth, we can prove that repeatL’ satisfies the

same defining equations as the original repeatL.

definition repeatL’ :: "’a → ’a llist"
where "repeatL’ = repeatL depth·unlimited"

With these definitions in place, we want to show that repeatL’ satisfies the

homomorphism law, repeatL’·f � repeatL’·x = repeatL’·(f·x). We start by unfolding

the definition of repeatL’ to reveal applications of repeatL depth to unlimited:

goal (1 subgoal):
1. repeatL depth·unlimited·f � repeatL depth·unlimited·x
= repeatL depth·unlimited·(f·x)

Each occurrence of repeatL depth in the goal has a different type, so fixed point

induction on repeatL depth would bring the same difficulties as before. But we

have another option now: We can do fixed point induction on the depth parame-

ter unlimited, using the Fixrec-provided rule unlimited.induct. Because all depth

parameters have the same type, we can abstract over all three simultaneously.

theorem unlimited.induct:
"Jadm P; P ⊥; ∧x. P x =⇒ P (DSuc·x)K =⇒ P unlimited"

The rest of the proof is handled automatically by the simplifier. At last, we have

achieved the high level of proof automation we were aiming for:

lemma llist homomorphism: "repeatL’·f � repeatL’·x = repeatL’·(f·x)"
unfolding repeatL’ def by (rule unlimited.induct, simp all)



www.manaraa.com

258

Fixed point induction with depth-limited functions looks like a promising gen-

eral technique for automating HOLCF proofs, but its uses are still in the exper-

imental stage. Eventually it might be beneficial to have the Fixrec package

automatically generate depth-limited versions of all recursive functions, but this is

left for future work.

7.3 A CONCURRENCY MONAD

The previous section gave an example of a simple datatype definition, with rel-

atively easy proofs. In this section, we will discuss a significantly more complex

monadic type, which will give the reasoning infrastructure of HOLCF ’11 much

more of a workout. In this way, we will demonstrate how well HOLCF ’11 scales

up to handle verification tasks that are beyond the scope of many other theorem-

proving systems, including earlier versions of HOLCF.

The particular datatype considered in this section is a monad that is designed

to model concurrent computations. It combines three different kinds of effects:

• Resumptions, to keep track of suspended threads of computations

• State, to allow multiple threads to communicate with each other

• Nondeterminism, to model computations with unpredictable evaluation order

The concurrency monad that we will verify here is identical to the one used by

Papaspyrou [Pap01a] to model the semantics of a language with concurrency prim-

itives. The monad uses powerdomains (see Chapter 5) to model nondeterminism,

so it is not a direct translation from any monad definable in Haskell. However, it

is still directly relevant for verification of Haskell programs, as a model of Haskell’s

primitive ST or IO monads [Thi95].



www.manaraa.com

259

7.3.1 Composing monads

Many well-known monads encode a single, specific kind of effect—such as error

handling, mutable state, string output, or nondeterminism. To model computa-

tions with one kind of effect, programmers can simply use one of these standard

monads. But to model computations with a unique combination of effects, a pro-

grammer has two choices: Either write a new complex monad type all at once,

by hand; or build the monad in a modular fashion, by combining a standard base

monad with one or more standard monad transformers [Mog89, LHJ95]. A monad

transformer is simply a monad that is parameterized over another, “inner” monad.

The transformed monad supports all the effects of the inner monad, and adds

more of its own. Multiple monad transformers can be layered to combine as many

features as the programmer needs.

In this section we will follow Papaspyrou [Pap01a] in defining our concurrency

monad using monad transformers. Specifically, we start with the convex powerdo-

main to model nondeterminism. Next we wrap this in a state monad transformer,

and finally with a resumption monad transformer.

Using monad transformers not only makes it easier to write the monad oper-

ations, it also offers a nice way to structure the verification proofs. After intro-

ducing the state monad transformer (§7.3.2), we will then discuss the verification

of a state/nondeterminism monad (§7.3.3). Then, after covering the resumption

monad transformer (§7.3.4), we will see proofs for the full concurrency monad

(§7.3.5–§7.3.7).

Besides the usual functor and monad operations, we will also define and verify

an operation for nondeterministically interleaving two computations. Much like

the zipWith operation on lazy lists, the interleaving operator can be proven to

satisfy the applicative functor laws (§7.3.8).



www.manaraa.com

260

newtype State s a = MkState { runState :: s -> (a, s) }

instance Functor (State s) where
fmap f c = MkState

(\s -> let (x, s’) = runState c s in (f x, s’))

instance Monad (State s) where
return x = MkState (\s -> (x, s))
c >>= k = MkState

(\s -> let (x, s’) = runState c s in runState (k x) s’)

Figure 7.7: Haskell definition of state monad

7.3.2 State monad transformer

The state monad is used for computations that may imperatively read and write

to a location in memory. The Haskell type State s a (Fig. 7.7) is represented as

a function that takes an initial state of type s, and returns a pair containing a

result of type a and a final state.

The state monad transformer replaces the function type s -> (a, s) with

s -> m (a, s), for some monad m. This allows the function on states to have

some additional side-effects, depending on the choice of inner monad. The monad

operations on StateT s m are defined similarly to those for State s, but they

additionally include calls to the underlying monad operations on type m (Fig. 7.8).

Recall the ChoiceMonad type class, discussed previously in Chapter 5; it extends

the Monad type class with an additional binary choice operator. We can define a

binary choice operator on StateT s m in terms of the choice operator on monad

m, as shown in Fig. 7.9.

All of these operations on type StateT s m should satisfy some equational laws,

assuming that the operations on the inner monad m also satisfy the appropriate

laws. Verifying these laws is the subject of the next section.



www.manaraa.com

261

newtype StateT s m a = MkStateT { runStateT :: s -> m (a, s) }

instance (Functor m) => Functor (StateT s m) where
fmap f c = MkStateT

(\s -> fmap (\(x, s’) -> (f x, s’)) (runStateT c s))

instance (Monad m) => Monad (StateT s m) where
return x = MkStateT (\s -> return (x, s))
c >>= k = MkStateT

(\s -> runStateT c s >>= \(x, s’) -> runStateT (k x) s’)

Figure 7.8: Haskell definition of state monad transformer

class (Monad m) => ChoiceMonad m where
(|+|) :: m a -> m a -> m a

instance (ChoiceMonad m) => ChoiceMonad (StateT s m) where
c1 |+| c2 = MkStateT (\s -> runStateT c1 s |+| runStateT c2 s)

Figure 7.9: Haskell ChoiceMonad class, with instance for state monad transformer



www.manaraa.com

262

7.3.3 Verifying a state/nondeterminism monad

In this section, we will verify an instance of the state monad transformer, using

the convex powerdomain as the inner monad. This combination yields a monad

that implements two out of the three effects that we ultimately want: state and

nondeterminism. Building on the existing powerdomain operations, we define the

monad operations on this new type, along with a nondeterministic choice operator.

We also use the powerdomain laws to help derive the usual laws about the new

operations. (Refer to Chapter 5 for the operations on the convex powerdomain,

and the laws that they satisfy.)

In HOLCF, we define a type (’s, ’a) N to model the state monad transformer

applied to the convex powerdomain, with state type ’s and result type ’a. To avoid

having to deal with HOLCF equivalents of the MkStateT and runStateT functions,

we define N as a type synonym. The Haskell pair type (a, s) (which is lazy in

both arguments) is modeled as a HOLCF strict product of two lifted types. We

then define the HOLCF functions mapN, unitN, bindN, and plusN to model the

Haskell functions fmap, return, (>>=), and (|+|), respectively. Their definitions

are shown in Fig. 7.10.

Figure 7.11 contains a list of all the relevant theorems about these operations

on type (’s, ’a) N that were proved in this case study. Included are the laws for

functors, monads, and choice monads—in fact, all of the powerdomain laws from

Chapter 5 are satisfied by the N monad. Because (’s, ’a) N is not a recursive type,

none of the proofs require any form of induction, merely case analysis. Most of

them derive fairly directly from the corresponding properties of the underlying

powerdomain type. All the proofs are straightforward (many are one line), and so

we omit the details.



www.manaraa.com

263

type synonym (’s, ’a) N = "’s → (’a⊥ ⊗ ’s⊥)\"

definition mapN :: "(’a → ’b) → (’s, ’a) N → (’s, ’b) N"
where "mapN = (Λ f. cfun map·ID·(convex map·(sprod map·(u map·f)·ID)))"

definition unitN :: "’a → (’s, ’a) N"
where "unitN = (Λ x. (Λ s. convex unit·(:up·x, up·s:)))"

definition bindN :: "(’s, ’a) N → (’a → (’s, ’b) N) → (’s, ’b) N"
where "bindN = (Λ c k. (Λ s. convex bind·(c·s)·(Λ (:up·x, up·s’:). k·x·s’)))"

definition plusN :: "(’s, ’a) N → (’s, ’a) N → (’s, ’a) N"
where "plusN = (Λ a b. (Λ s. convex plus·(a·s)·(b·s)))"

Figure 7.10: Functor, monad, and choice operations on state/nondeterminism

monad

7.3.4 Resumption monad transformer

The resumption monad transformer [Pap01a] augments an inner monad with the

ability to suspend, resume, and interleave threads of computations. In Haskell,

we define the type ResT m a to model resumptions with inner monad m and result

type a.

data ResT m a = Done a | More (m (ResT m a))

The value Done x represents a computation that has run to completion, yielding

the result x. The value More c represents a suspended computation that still has

more work to do: When c is evaluated, it may produce some side-effects (according

to the monad m) and eventually yields a new resumption of type ResT m a. A

good way to think about resumptions is as threads in a cooperative multitasking

system: A running thread may either terminate (Done x) or voluntarily yield to

the operating system, waiting to be resumed later (More c).



www.manaraa.com

264

lemma mapN ID:
"mapN·ID = ID"

lemma mapN mapN:
"mapN·f·(mapN·g·c) = mapN·(Λ x. f·(g·x))·c"

lemma bindN unitN:
"bindN·(unitN·x)·f = f·x"

lemma mapN conv bindN:
"mapN·f·c = bindN·c·(unitN oo f)"

lemma bindN unitN right:
"bindN·c·unitN = c"

lemma bindN bindN:
"bindN·(bindN·c·f)·g = bindN·c·(Λ x. bindN·(f·x)·g)"

lemma mapN plusN:
"mapN·f·(plusN·a·b) = plusN·(mapN·f·a)·(mapN·f·b)"

lemma plusN commute:
"plusN·a·b = plusN·b·a"

lemma plusN assoc:
"plusN·(plusN·a·b)·c = plusN·a·(plusN·b·c)"

lemma plusN absorb:
"plusN·a·a = a"

Figure 7.11: Laws satisfied by operations on state/nondeterminism monad



www.manaraa.com

265

data ResT m a = Done a | More (m (ResT m a))

instance (Functor m) => Functor (ResT m) where
fmap f (Done x) = Done (f x)
fmap f (More c) = More (fmap (fmap f) c)

instance (Functor m) => Monad (ResT m s) where
return x = Done x
Done x >>= k = k x
More c >>= k = More (fmap (\r -> r >>= k) c)

Figure 7.12: Haskell definition of resumption monad transformer

The code for the functor and monad instances is given in Fig. 7.12. Note

that the fmap and (>>=) are defined by using the fmap from the underlying type

constructor m on the recursive calls.

The resumption monad transformer can be used to nondeterministically inter-

leave two computations, when used with an inner monad that provides a binary

choice operator. We can define a Haskell function zipR that randomly interleaves

two computations, and combines their results (Fig. 7.13). The idea is that as long

as at least one of the two computations has the form More c, zipR chooses one,

runs it for one step, and repeats. When both computations have the form Done x,

it combines the results using function f.

The name of the function zipR has been chosen to be reminiscent of the stan-

dard Haskell list function zipWith, which was covered earlier in this chapter. The

two functions have similar types, and it turns out that they also satisfy many of the

same equational laws: Like zipWith, zipR forms the basis of an applicative functor

instance. After formalizing and verifying the functor and monad operations in the

next few sections, we will return to a verification of zipR in Sec. 7.3.8.



www.manaraa.com

266

zipR :: (ChoiceMonad m) =>
(a -> b -> c) -> ResT m a -> ResT m b -> ResT m c

zipR f (Done x1) (Done x2) = Done (f x1 x2)
zipR f (Done x1) (More c2) = More

(fmap (\r -> zipR f (Done x1) r) c2)
zipR f (More c1) (Done x2) = More

(fmap (\r -> zipR f r (Done x2) r) c1)
zipR f (More c1) (More c2) = More

(fmap (\r -> zipR f (More c1) r) c2 |+|
fmap (\r -> zipR f r (More c2)) c1)

Figure 7.13: Haskell definition of nondeterministic interleaving operator

7.3.5 Defining the full concurrency monad

Having already formalized the N monad for state and nondeterminism, only one

step remains: We must define the final monad by combining the N monad with

a resumption monad transformer. The domain definition shown below is handled

easily by the Domain package:

domain (’s, ’a) R = Done (lazy "’a") | More (lazy "(’s, (’s, ’a) R) N")

This type definition exercises some unique abilities of the HOLCF ’11 Domain

package. First of all, note that the definition uses indirect recursion: The recursive

occurrence of (’s, ’a) R is not actually an argument type of a constructor, but is

wrapped inside the N monad type—which is itself a combination of lifting, strict

product, convex powerdomain, and the continuous function space. For compari-

son, the original HOLCF ’99 Domain package was not designed to handle indirect

recursion at all [Ohe97]. The Isabelle/HOL Datatype package can handle some

indirect-recursive definitions by transforming them (internally) into equivalent mu-

tually recursive definitions, but this only works for indirect recursion with other

HOL datatypes. If the Domain package had been implemented with the same

technique, it would not have been able to define domain R—its indirect recursion



www.manaraa.com

267

cannot be translated away as mutual recursion, because it involves a powerdomain

type. To the best of the author’s knowledge, the HOLCF ’11 Domain package is

the first formal reasoning system that can handle such a type definition.

Due to the indirect recursion, however, the package warns us that it has not

attempted to generate a high-level induction rule (i.e., one stated in terms of the

constructors Done and More). The only induction rule generated for indirect-

recursive domains is a low-level one in terms of take functions.

theorem R.take induct: "Jadm P; ∧n. P (R take n·x)K =⇒ P x"

We can use the low-level take induction rule to generate our own high-level

induction rule. Depending on the particular domain definition, there may be more

than one sensible formulation of a high-level induction rule for a given indirect-

recursive datatype. Generating one that will work well for the proofs about R is

the subject of the next section.

7.3.6 Induction rules for indirect-recursive domains

There are several different ways to express induction principles over indirect-

recursive datatypes. The goal of this section is to find a style of induction rule

that will work well for proving results about the domain R. To that end, we will

consider a few alternatives, using a relatively simple Isabelle/HOL datatype of

trees as a basis for examples.

datatype ’a tree = Leaf "’a" | Branch "’a tree list"

For indirect-recursive datatypes like ’a tree, the Datatype package generates an

induction rule similar to the ones produced for mutually recursive datatype defini-

tions. Types ’a tree and ’a tree list are treated as two mutually defined datatypes;

the induction rule has one predicate for each of them.

theorem tree.induct:
fixes P :: "’a tree ⇒ bool" and Q :: "’a tree list ⇒ bool"



www.manaraa.com

268

assumes "∧x. P (Leaf x)"
assumes "∧ts. Q ts =⇒ P (Branch ts)"
assumes "Q []"
assumes "∧t ts. JP t; Q tsK =⇒ Q (t # ts)"
shows "P t ∧ Q ts"

This form of induction rule makes sense for reasoning about pairs of mutually

defined functions, such as these map functions for trees and lists of trees:

primrec tree map :: "(’a ⇒ ’b) ⇒ ’a tree ⇒ ’b tree"
where "tree map f (Leaf x) = Leaf (f x)"
| "tree map f (Branch ts) = Branch (tree list map f ts)"

and tree list map :: "(’a ⇒ ’b) ⇒ ’a tree list ⇒ ’b tree list"
where "tree list map f [] = []"
| "tree list map f (t # ts) = tree map f t # tree list map f ts"

The mutually recursive induction rule tree.induct is a good match for proving prop-

erties about mutually recursive functions like tree map and tree list map, because

we can have a predicate P mentioning tree map and a predicate Q mentioning

tree list map.

On the other hand, suppose we have a single recursive function defined like

this, where the newly-defined function is mapped over a list in the recursive case:

fun tree map’ :: "(’a ⇒ ’b) ⇒ ’a tree ⇒ ’b tree"
where "tree map’ f (Leaf x) = Leaf (f x)"
| "tree map’ f (Branch ts) = Branch (map (tree map’ f) ts)"

With this style of definition, the mutual-recursion-style induction rule is awkward

to use. An alternative form with a single predicate would be preferable, such as

the rule tree all induct shown below.

lemma tree all induct:
assumes "∧x. P (Leaf x)"
assumes "∧ts. list all P ts =⇒ P (Branch ts)"
shows "P t"



www.manaraa.com

269

Here the function list all :: (’a ⇒ bool) ⇒ ’a list ⇒ bool is a predicate former from

the list library; list all P ts asserts that predicate P holds for all elements of the

list ts. We will refer to this style of rule, which refers to an all predicate on some

datatype, by the name all-induction.

As stated earlier, the recursive domain (’s, ’a) R is not equivalent to any mutu-

ally inductive domain definition, so we cannot hope to produce a mutual induction

rule for type (’s, ’a) R in the style of tree.induct. There is more hope for an all-

induction rule, because it may be possible to generalize predicate formers like list all

to other type constructors (like powerdomains) that are not necessarily datatypes.

However, it turns out that there is yet another form of induction rule that

generalizes even better: Instead of requiring a predicate former like list all, we can

express an induction rule that needs nothing more than a map function. We will

refer to such rules as map-induction rules. A map-induction rule for the ’a tree

datatype is shown below.

lemma tree map induct:
fixes P :: "’a tree ⇒ bool"
assumes 1: "∧x. P (Leaf x)"
assumes 2: "∧f ts. (∀t::’a tree. P (f t)) =⇒ P (Branch (map f ts))"
shows "P t"

Map-induction rules in the style of tree map induct generalize readily to most any

indirect-recursive domain definition. Recall from Chapter 4 that map functions are

already required in order to define indirect-recursive domains. Map-induction rules

also work well in practice for proving properties of recursively-defined functions,

as we will see later on.

Map-induction rules for indirect-recursive domains can be derived from the low-

level take-induction rules in a straightforward way. We will now step through the

derivation of the map-induction rule for domain (’s, ’a) R, which is shown below.

lemma R induct:
fixes P :: "(’s, ’a) R ⇒ bool"



www.manaraa.com

270

assumes adm: "adm P"
assumes bottom: "P ⊥"
assumes Done: "∧x. P (Done·x)"
assumes More: "∧p c. (∧r::(’s, ’a) R. P (p·r)) =⇒ P (More·(mapN·p·c))"
shows "P r"

The proof starts by applying the low-level take induction rule R.take induct:

Because P is admissible, to prove P r it is sufficient to show that P (R take n·r)

for all natural numbers n. The remainder of the proof proceeds by showing

∀r. P (R take n·r) by induction on n.

In the base case n = 0, we have R take n·r = ⊥. The goal ∀r. P ⊥ can then be

solved immediately using the assumptions.

In the inductive case n = Suc n’, we proceed by case analysis on r. The three

possibilities are r = ⊥, r = Done·x, and r = More·c. By the definition of R take,

we then have R take n·r = ⊥, Done·x, or More·(mapN·(R take n’)·c), respectively.

Each of these subcases can be discharged using the assumptions together with the

inductive hypothesis.

7.3.7 Verifying functor and monad laws

Recall the Haskell code for the resumption monad transformer from Fig. 7.12.

We translate these definitions directly into HOLCF using the Fixrec package, as

shown below. Note that we do not define a separate returnR function in HOLCF;

the relevant properties are stated directly in terms of the Done constructor.

fixrec mapR :: "(’a → ’b) → (’s, ’a) R → (’s, ’b) R"
where mapR Done: "mapR·f·(Done·x) = Done·(f·x)"
| mapR More: "mapR·f·(More·n) = More·(mapN·(mapR·f)·n)"

fixrec bindR :: "(’s, ’a) R → (’a → (’s, ’b) R) → (’s, ’b) R"
where bindR Done: "bindR·(Done·x)·k = k·x"
| bindR More: "bindR·(More·c)·k = More·(mapN·(Λ r. bindR·r·k)·c)"



www.manaraa.com

271

In addition to the defining equations, we also need strictness rules for mapR

and bindR; these are provided by fixrec simp.

lemma mapR strict [simp]: "mapR·f·⊥ = ⊥"
by fixrec simp

lemma bindR strict [simp]: "bindR·⊥·k = ⊥"
by fixrec simp

Now we will see how well our induction rule R induct from the previous section

works in practice, by using it to make highly automated proofs of the functor

and monad laws. We examine one proof in detail, showing that mapR preserves

function composition.

lemma mapR mapR: "mapR·f·(mapR·g·r) = mapR·(Λ x. f·(g·x))·r"
apply (induct r rule: R induct)

Applying the induction rule leaves us with four subgoals: an admissibility side

condition, base cases for ⊥ and Done·x, and an inductive case for More·(mapN·p·c).

goal (4 subgoals):
1. adm (λa. mapR·f·(mapR·g·a) = mapR·(Λ x. f·(g·x))·a)
2. mapR·f·(mapR·g·⊥) = mapR·(Λ x. f·(g·x))·⊥
3. ∧x. mapR·f·(mapR·g·(Done·x)) = mapR·(Λ x. f·(g·x))·(Done·x)
4. ∧p c. (∧r. mapR·f·(mapR·g·(p·r)) = mapR·(Λ x. f·(g·x))·(p·r)) =⇒
mapR·f·(mapR·g·(More·(mapN·p·c))) = mapR·(Λ x. f·(g·x))·(More·(mapN·p·c))

The first three subgoals can be solved directly by the simplifier, using the defin-

ing properties of mapR. If we simplify the conclusion of the final subgoal using

mapR More, it reduces to the following:

mapN·(mapR·f)·(mapN·(mapR·g)·(mapN·p·c)) =
mapN·(mapR·(Λ x. f·(g·x)))·(mapN·p·c)

We can see that the subgoal now contains instances of mapN applied to mapN. If

we rewrite using the rule mapN mapN, the subgoal reduces further:

mapN·(Λ x. mapR·f·(mapR·g·(p·x)))·c =
mapN·(Λ x. mapR·(Λ x. f·(g·x))·(p·x))·c



www.manaraa.com

272

lemma mapR mapR: "mapR·f·(mapR·g·r) = mapR·(Λ x. f·(g·x))·r"
by (induct r, simp all add: mapN mapN)

lemma mapR ID: "mapR·ID·r = r"
by (induct r, simp all add: mapN mapN eta cfun)

lemma bindR Done right: "bindR·r·Done = r"
by (induct r, simp all add: mapN mapN eta cfun)

lemma mapR conv bindR: "mapR·f·r = bindR·r·(Λ x. Done·(f·x))"
by (induct r, simp all add: mapN mapN)

lemma bindR bindR: "bindR·(bindR·r·f)·g = bindR·r·(Λ x. bindR·(f·x)·g)"
by (induct r, simp all add: mapN mapN)

Figure 7.14: Functor and monad laws for concurrency monad

Finally, the remaining subgoal can now be solved using the inductive hypothesis.

In the final proof script, we can perform all of these rewriting steps at once with

a single call to the simplifier, yielding an easy one-line proof:

lemma mapR mapR: "mapR·f·(mapR·g·r) = mapR·(Λ x. f·(g·x))·r"
by (induct r rule: R induct, simp all add: mapN mapN)

All of the functor and monad laws for the (’s, ’a) R monad shown in Fig. 7.14

have similar one-line proofs, using induction followed by simplification. The fact

that this level of automation is possible demonstrates the general utility of map-

induction.

7.3.8 Verification of nondeterministic interleaving

In this section we will see how to formalize and verify the nondeterministic inter-

leaving operator in HOLCF ’11. We model the Haskell function zipR, given previ-

ously in Fig. 7.13, as the HOLCF function zipR. The definition, using Fixrec, is

shown in Fig. 7.15. The translation is mostly direct, but note that we fix the inner



www.manaraa.com

273

fixrec zipR :: "(’a → ’b → ’c) → (’s, ’a) R → (’s, ’b) R → (’s, ’c) R"
where zipR Done Done:
"zipR·f·(Done·x)·(Done·y) = Done·(f·x·y)"

| zipR Done More:
"zipR·f·(Done·x)·(More·b) = More·(mapN·(Λ r. zipR·f·(Done·x)·r)·b)"

| zipR More Done:
"zipR·f·(More·a)·(Done·y) = More·(mapN·(Λ r. zipR·f·r·(Done·y))·a)"

| zipR More More:
"zipR·f·(More·a)·(More·b) = More·
(plusN·(mapN·(Λ r. zipR·f·(More·a)·r)·b)·(mapN·(Λ r. zipR·f·r·(More·b))·a))"

Figure 7.15: HOLCF definition of nondeterministic interleaving operator

monad m to be the N monad in HOLCF, so fmap and (|+|) translate to mapN and

plusN, respectively.

In addition to the defining equations supplied by Fixrec, we can also prove

lemmas stating that zipR is strict in its second and third arguments, with the aid

of the fixrec simp method.

In order to state the applicative functor laws, we need HOLCF equivalents for

the Haskell operations (<*>) and pure. Just as we did for lazy lists, we define

an abbreviation for zipR·ID with infix syntax to represent (<*>). The constructor

function Done takes the place of pure.

abbreviation apR (infixl "�" 70)
where "a � b ≡ zipR·ID·a·b"

With the definitions in place, we can now start to prove the applicative functor

laws. Surprisingly, the homomorphism law—which was by far the trickiest to verify

for lazy lists—is the easiest to prove for the R monad. The law follows directly

from zipR Done Done, one of the defining equations of zipR.

lemma R homomorphism: "Done·f � Done·x = Done·(f·x)"
by simp



www.manaraa.com

274

The proofs of the identity and interchange laws are also easy. They both

have proofs similar to those for the functor and monad laws, by induction and

simplification with mapN mapN (and also eta-contraction, as needed).

lemma R identity: "Done·ID � r = r"
by (induct r, simp all add: mapN mapN eta cfun)

lemma R interchange: "r � Done·x = Done·(Λ f. f·x) � r"
by (induct r, simp all add: mapN mapN)

Of the four applicative functor laws, the associativity law stands out as the

tricky one to prove. The fact that the law mentions three variables of type (’s, ’a) R

necessarily complicates the proof.

lemma R associativity: "Done·cfcomp � r1 � r2 � r3 = r1 � (r2 � r3)"

For lazy lists, the proof of the associativity law only requires induction over one list

variable, with case analysis on the other two. The reason this works is that in the

definition of zipL, every argument decreases with every recursive call—specifically,

zipL·(LCons·x·xs)·(LCons·y·ys) only makes a recursive call to zipL·xs·ys. So with a

single induction over either xs or ys, we can be sure that the inductive hypothesis

will apply to the result of any recursive call.

In contrast, recursive calls to zipR only decrease one argument, while the other

stays the same—and it is not always the same one! Thus a single induction will

not suffice. To prove the associativity law for zipR, we must perform nested induc-

tions: First, induct over r1; within each case of the induction, proceed by another

induction over r2; finally, prove each of those cases by induction over r3.

Without knowing beforehand whether it would work, a proof of R associativity

was attempted using this strategy: Do nested inductions as needed with R induct,

and discharge subgoals by simplification. The proof attempt was a real test of the

map-induction principle of R induct: An induction principle that is too weak could

have easily led to a proof state with unprovable subgoals. Fortunately, this did not



www.manaraa.com

275

happen with the proof of R associativity, and the proof was completed as planned.

Although the proof is rather lengthy, it goes through without getting stuck, and

without requiring additional lemmas.

Figure 7.16 gives a cleaned-up version of the complete proof script. To keep

track of the numerous inductions and subcases, the proof is presented in Isabelle’s

structured-proof style. The command proof (induct ...) starts a new proof by in-

duction. Within an induction proof, case (...) selects a subgoal to work on, assum-

ing any inductive hypotheses and binding the new subgoal to the variable ?case.

The qed command closes a block opened by proof; the variant qed simp all says

to prove any remaining subcases using the simplifier.

Recall that an induction with R induct actually yields four subgoals: An admis-

sibility condition, and cases for ⊥, Done·x, and More·(mapN·p·c). If all three cases

always required nested inductions to prove, this would have resulted in a proof

script with 33 = 27 separate subcases to discharge, in addition to the admissibility

checks. Fortunately, there are some shortcuts—for example, because zipR is strict,

any ⊥ cases can be proved immediately without needing an inner induction.

The remaining cases are solvable with varying levels of effort. The Done/Done/

Done case can be solved automatically by simplification, no extra lemmas needed.

Subgoals where exactly two of the three computations are Done can be solved by

simplifying with the additional rule mapN mapN, as in the proofs of the functor

and monad laws.

Cases where only one of the three computations is Done require a little more

work. For example, in the Done/More/More case, we have the following inductive

hypotheses and proof obligation:
∧r3. Done·cfcomp � Done·x1 � More·(mapN·p2·c2) � p3·r3 =
Done·x1 � (More·(mapN·p2·c2) � p3·r3)∧r2 r3. Done·cfcomp � Done·x1 � p2·r2 � r3 = Done·x1 � (p2·r2 � r3)



www.manaraa.com

276

lemma R associativity: "Done·cfcomp � r1 � r2 � r3 = r1 � (r2 � r3)"
proof (induct r1 arbitrary: r2 r3)

case (Done x1) thus ?case
proof (induct r2 arbitrary: r3)

case (Done x2) thus ?case
proof (induct r3)

case (More p3 c3) thus ?case (∗ Done/Done/More ∗)
by (simp add: mapN mapN)

qed simp all
next

case (More p2 c2) thus ?case
proof (induct r3)

case (Done x2) thus ?case (∗ Done/More/Done ∗)
by (simp add: mapN mapN)

next
case (More p3 c3) thus ?case (∗ Done/More/More ∗)

by (simp add: mapN mapN mapN plusN)
qed simp all

qed simp all
next

case (More p1 c1) thus ?case
proof (induct r2 arbitrary: r3)

case (Done x2) thus ?case
proof (induct r3)

case (Done x3) thus ?case (∗ More/Done/Done ∗)
by (simp add: mapN mapN)

next
case (More p3 c3) thus ?case (∗ More/Done/More ∗)

by (simp add: mapN mapN)
qed simp all

next
case (More p2 c2) thus ?case
proof (induct r3)

case (Done x3) thus ?case (∗ More/More/Done ∗)
by (simp add: mapN mapN mapN plusN)

next
case (More p3 c3) thus ?case (∗ More/More/More ∗)

by (simp add: mapN mapN mapN plusN plusN assoc)
qed simp all

qed simp all
qed simp all

Figure 7.16: Full proof of associativity for nondeterministic interleaving operator



www.manaraa.com

277

goal (1 subgoal):
1. Done·cfcomp � Done·x1 � More·(mapN·p2·c2) � More·(mapN·p3·c3) =
Done·x1 � (More·(mapN·p2·c2) � More·(mapN·p3·c3))

After inserting the inductive hypotheses and applying (simp add: mapN mapN), we

get stuck with the following unsolved goal:

goal (1 subgoal):
1. J

∧r3. More·(mapN·(Λ x. Done·(cfcomp·x1) � p2·x)·c2) � p3·r3 =
Done·x1 � (More·(mapN·p2·c2) � p3·r3);∧r2 r3. Done·(cfcomp·x1) � p2·r2 � r3 = Done·x1 � (p2·r2 � r3)K

=⇒ plusN·(mapN·(Λ r3. Done·x1 � (More·(mapN·p2·c2) � p3·r3))·c3)·
(mapN·(Λ x. Done·x1 � (p2·x � More·(mapN·p3·c3)))·c2) =
mapN·(Λ r. Done·x1 � r)·
(plusN·(mapN·(Λ r3. More·(mapN·p2·c2) � p3·r3)·c3)·
(mapN·(Λ r2. p2·r2 � More·(mapN·p3·c3))·c2))

Note that the right-hand side of the conclusion has the form mapN·f·(plusN·x·y).

Fortunately we have a rewrite rule mapN plusN (Fig. 7.11) that matches this pat-

tern. If we back up and try (simp add: mapN mapN mapN plusN), then the subgoal

is discharged in one step. The general lesson about map-induction is this: Success-

ful proofs require the map function to distribute over any other functions (such as

mapN or plusN) that may surround recursive calls.

The More/More/More case also requires simplification with extra rewrite rules.

We might start by trying (simp add: mapN mapN mapN plusN) again, which we

used to solve the Done/More/More case. This leaves an unsolved goal, which is

an equality between two very large terms—it is not worth the space to repeat it

here. The one important detail about the leftover goal is that it has the form

plusN·x·(plusN·y·z) = plusN·(plusN·x·y)·z, which is an instance of rule plusN assoc

(Fig. 7.11). By also including this rule in the call to the simplifier, the subgoal

can be discharged in one step. Following this pattern, every subgoal is solved by

simplification with an appropriate set of rewrite rules; this concludes the proof.

The proof of R associativity using the map-induction rule R induct shows that



www.manaraa.com

278

map-induction is not only useful for small or obvious lemmas. It is a strong enough

reasoning principle to be useful for exploratory proving of complex theorems.

7.4 SUMMARY

Based on the case studies presented in this chapter, we can make some conclusions

about the expressiveness and automation of HOLCF ’11. In terms of expressive-

ness, we have seen that the definition packages of HOLCF ’11 let users express a

wide variety of programs in a direct and concise way. The Fixrec package pro-

vides input notation that is similar to Haskell syntax, making it easy to translate

programs into HOLCF. Users can define arbitrary recursive functions with pat-

tern matching, without having to use explicit fixed point combinators and without

having to prove termination. Likewise, the new Domain package makes it easy to

translate a wide variety of Haskell datatypes into HOLCF ’11. In particular, the

ability to define and reason about indirect-recursive datatypes opens up HOLCF

to an important new class of programs, including many interesting Haskell mon-

ads. New theory libraries in HOLCF ’11 also contribute to its expressiveness.

Specifically, the powerdomain library expands HOLCF’s range to include nonde-

terministic and concurrent programs.

In addition to expressiveness, HOLCF ’11 provides a high level of proof au-

tomation. In the introduction we claimed that easy proofs should be almost com-

pletely automatic, and we have seen that many lemmas can be proved with one-line

proof scripts, using induction and simplification. Instead of dealing with mundane

details, proof effort can be focused on more interesting tasks, like identifying im-

portant lemmas. We also claimed that the automation helps to make larger, more

complex proofs more feasible, by letting users focus on only the interesting parts

of proofs. The proof of associativity for the nondeterministic interleaving operator

is evidence of this: We can write a proof script where only those subcases with



www.manaraa.com

279

nontrivial proofs are considered explicitly; admissibility checks and trivial induc-

tion cases can be handled automatically, without having to mention them in the

proof script.

7.5 COMPARISON TO RELATED WORK

We claim that HOLCF ’11 has an unprecedented combination of expressiveness,

automation, and confidence. To substantiate this claim, we evaluate several other

reasoning tools along these dimensions.

Informal verification. To start with, it may be instructive to compare the

HOLCF ’11 concurrency monad case study from this chapter with manual proofs

of the same theorems. As a companion to his conference paper [Pap01a], Papaspy-

rou provides detailed hand-written proofs of several properties about the resump-

tion monad transformer in a technical report [Pap01b]. The proofs are based on a

domain-theoretic model of recursive types, taking advantage of the bifinite struc-

ture of the resumption monad: Instead of reasoning about the recursively-defined

domain directly, Papaspyrou instead works with the sequence of finite domains

that approximate it. Results are then transferred from the finite domains to the

full recursive domain in a separate step.

Informal reasoning provides no automation, but it gives a lot of flexibility in

terms of expressiveness. With no tool-imposed limits, it is possible to reason about

any kind of program that has a known mathematical or domain-theoretical model.

However, informal proofs are limited in terms of confidence, because each proof

must be read and understood in order to be trusted. This can become a major

limitation as proofs grow in size.

Papaspyrou’s manual proofs of the functor and monad laws for the resumption

monad, including auxiliary definitions and lemmas, take up about 91
2 pages of the

document [Pap01b]. Papaspyrou did not attempt any manual proofs about the



www.manaraa.com

280

more complicated interleaving operation, but we can estimate the relative proof

complexity by looking at the HOLCF scripts: Most of the functor and monad

law proofs, whose informal proofs take almost a page each, have one- or two-line

proofs in HOLCF. In comparison, the associativity law R associativity has a 40-

line HOLCF proof script (Fig. 7.16); at this ratio, one can imagine the amount of

hand-written proof text it would take to prove R associativity with a similar level

of rigor. At this scale, it becomes difficult for a reader to check a written proof for

correctness, which limits the confidence in manually-proven results.

Simpler domain-theoretic models can yield shorter informal proofs that are eas-

ier to understand and check. For example, the induction principles used in Bird’s

Haskell textbook [Bir98] and the approximation lemma of Hutton and Gibbons

[HG01] are proof techniques based on a simpler category of cpos, and they yield

simpler proofs. But of course, there is a tradeoff here with expressiveness, because

simpler models can represent fewer datatypes and programs.

Formalizations of domain theory. The previous systems most similar to

HOLCF ’11 were of course earlier versions of HOLCF; we have already made

numerous comparisons in the previous chapters. We have also discussed some

features of Agerholm’s similar HOL-CPO system in Chapters 2 and 6 [Age94].

The HOL-CPO system was comparable to HOLCF ’95 in terms of its expressive

power and proof automation. It also included a tree-based universal domain that

was intended for constructing polynomial (i.e., sum-of-products) datatypes like

lazy lists, although the process was not automated. The HOLCF ’99 Domain

package brought much more automation for defining datatypes; however, this was

achieved at the expense of confidence, because of its axiomatic implementation.

While HOL-CPO had very little automation for defining datatypes, it did at least

preserve confidence by using a definitional approach.

More recently, Benton, et al. have formalized a significant amount of domain



www.manaraa.com

281

theory in the Coq theorem prover [BKV09]. They implemented sufficient ma-

chinery to construct solutions to recursive domain equations. The functionality

is comparable to that provided by the universal domain and algebraic deflation

libraries of HOLCF ’11, although Benton, et al. use different methods to achieve

the same result. Like HOLCF ’11, their formalization is completely definitional,

asserting no new axioms. However, their system provides little automation for

verifying individual functional programs. Their main emphasis has been on doing

programming-language meta-theory—i.e., building denotational models of other

programming languages and reasoning about the models—rather than on verifi-

cation of specific programs. To illustrate this point, note that their system lacks

lambda-binder syntax (Λx. t) for writing continuous functions; instead users must

compose functions from basic combinators like S and K.

General-purpose interactive theorem provers. In the earlier chapters, we

have already discussed the relationship between HOLCF and the original LCF

series of theorem provers. Having a first-order logic, the LCF provers had a less

expressive property language than HOLCF. The definition packages in HOLCF

’11 also yield improvements in expressiveness and automation over LCF, which

did not provide packages for either recursive datatypes or functions.

On the other hand, more recent theorem provers in the HOL family (Isabelle/

HOL, Gordon HOL/HOL4, HOL Light) do provide packages for defining datatypes

and recursive functions [Mel89, Sli96, BW99]. Each supports an input syntax

similar to most functional programming languages, and can be used to define

many datatypes and functions that are commonly used by functional programmers.

However, these packages generally provide only inductive datatypes, and allow only

terminating functions (usually with either primitive or well-founded recursion).

That is, unlike Haskell, datatypes never include any partial values (like ⊥) or

infinite values. We can use higher order logic to reason about Haskell programs, but



www.manaraa.com

282

the reasoning is only valid if we restrict our consideration to the total, terminating

fragment of the language [DGHJ06]. For example, ∀xs. reverse (reverse xs) = xs

is a theorem in Isabelle/HOL, and although it does not hold for all lazy lists in

Haskell, it is valid if we interpret the quantification as ranging over only finite,

total lists. Haskell programs that produce or consume infinite or partial values are

beyond the scope of such tools.

In addition to inductive datatypes, a few theorem provers also provide support

for coinductive datatypes (or “codatatypes”), which include both finite and infinite

values. The primary example is Coq, which has mature support for coinductive

types [Gim96]. This feature lets users define programs that produce infinite values,

as long as they are provably productive. In other words, codatatypes include

infinite values, but not partial values. Thus support for codatatypes allows a larger

class of Haskell programs to be formalized, although not as many as in HOLCF.

Coq uses a dependently-typed logic, which is more expressive than the simply-

typed logic implemented in Isabelle and other HOL provers. The programming

language ML uses a type system similar to Isabelle’s, so HOLCF can express most

all ML datatypes and programs; but Haskell has a richer type system intermediate

between Isabelle and Coq. As a result, Haskell programs that use certain type sys-

tem features cannot be formalized in HOLCF. Perhaps the most painful restriction

is Isabelle’s inability to express higher-order types, such as monad transformers,

which are parameterized by other type constructors. (Note that the HOLCF for-

malization of the resumption monad transformer described earlier in this chap-

ter used a fixed inner monad. Having the inner monad as a type parameter

would be preferable—and such higher-order types are perfectly representable in

the HOLCF ’11 universal domain—but unfortunately such types are not express-

ible in Isabelle.) Isabelle’s type system also rules out higher-rank polymorphism,

existential datatypes, and nested datatypes [BM98], even though these could also



www.manaraa.com

283

be modeled in the universal domain. In contrast, Coq would have no problem ex-

pressing programs with any of these kinds of types. In summary, neither Coq nor

HOLCF ’11 is clearly more expressive than the other: Each can directly formalize

some functional programs that the other cannot.

Coq and Isabelle have different approaches to automation. In Coq, users have

a selection of numerous proof tactics with small, precise, predictable effects. Ac-

cordingly, Coq proof scripts often tend to contain many explicit details. On the

other hand, Isabelle focuses more on just a few commonly-used tactics (particularly

induct, simp, and auto) which are very powerful and extensible. Isabelle’s simpli-

fier (used by both simp and auto) played an important role in the development of

HOLCF ’11: Much of the proof automation in HOLCF ’11 was implemented purely

by choosing a set of carefully-formulated conditional rewrite rules to declare to the

simplifier. Common subgoals involving admissibility, continuity, chains, compar-

isons, strictness, and more are all solvable by the simplifier. This is what makes

the highly automatic induct-and-simplify proof scripts possible in HOLCF ’11.

Each of the interactive theorem provers mentioned above is built on a small

trusted proof kernel, inspired by the LCF-style architecture, so they provide a high-

confidence argument for correctness. Perhaps HOL Light has a slight advantage

over the others (including Isabelle) because it has the smallest, simplest proof

kernel.

Language-specific interactive proof systems. Interactive proof tools exist

that are specifically designed for reasoning about a specific programming language.

Of these, the Sparkle theorem prover [MEP01] is the most closely related to

HOLCF ’11 in terms of its aims and its capabilities.

Sparkle is an interactive theorem prover that is custom-designed for reasoning

about programs written in the lazy functional language Clean. Like HOLCF,

it models language features like bottoms, partial and infinite values, strictness



www.manaraa.com

284

and laziness properties of functions, and strict and lazy datatypes. Datatype and

function definitions are specified directly as programs written in (a subset of)

the Clean language. Except for translating away a few unsupported language

features, it is then almost trivial to import a Clean program into Sparkle: The

prover reasons directly on the source representation, so no translation process is

necessary. (This is in contrast to HOLCF, which is intended to be able to express

a common subset of various functional languages, but requires a bit of translation

e.g. from Haskell.)

While the expressiveness of Sparkle is very good for programs and datatypes,

the formula language is more restricted. Properties in Sparkle are expressed in

a fixed formula language that includes equality, various logical connectives, and

universal and existential quantification. User-defined predicates are limited to

executable functions that produce booleans. Like the original LCF systems, it is

first-order, so it is not possible to express induction principles as theorems—the

hardwired induction tactic is the only form of induction available. (It is, however,

possible to state and prove take lemmas.)

As for automation, Sparkle has a collection of built-in proof tactics, including

rewriting, induction over datatypes, case analysis, and many others. It also has a

hint mechanism that can select and apply tactics automatically, so proofs of some

simple theorems can completed without user interaction. In terms of its proof

capabilities, Sparkle can handle all the proofs about lazy lists that were shown

in Sec. 7.2, although the automation has problems with functions like repeat,

whose definitions can cause some rewriting strategies to loop.

Sparkle is implemented in the Clean language. However, it does not adhere

to the LCF architecture—to trust in the correctness of a proof, it is necessary to

trust the code implementing each tactic used in the proof. Having to trust the

implementation code of every tactic may have led to some tactics being a bit too

conservative: For example, when performing induction over mutually inductive



www.manaraa.com

285

or indirect-recursive datatypes, the built-in induction principle is weaker than it

could be, omitting induction hypotheses except for directly-recursive arguments.

Another tool that was partly inspired by Sparkle is the Haskell Equational

Reasoning Assistant (HERA) [Gil06]. This tool provides a user-interface similar to

Sparkle, where users can select subterms and apply a variety of rewriting-based

tactics. In terms of proof capabilities, it is much more limited than Sparkle or

LCF, since it supports only rewriting and not induction. It is not implemented

in the LCF style, but HERA does record all of the equations used to rewrite a

program, making it possible (in principle) to replay or check a HERA proof in

another tool.

7.6 CONCLUSION

The research effort of developing HOLCF can be divided roughly into three areas

of work: 1) formalizing domain theory and proving libraries of theorems; 2) design-

ing proof heuristics and automation, configuring the simplifier and other tactics;

and 3) implementing definition packages. All three items are tightly interdepen-

dent, of course. Choices about which domain-theoretic concepts to formalize are

constrained by the requirements of the definition packages, and also influenced by

the desire for better automation. Definition packages must generate theorems that

implement proof automation for users; conversely, the definition packages are also

users of proof automation themselves, while they are performing internal proofs.

In terms of choosing which domain-theoretic concepts to formalize in HOLCF,

the primary lesson learned is the importance of keeping things small: To get a

high level of proof automation, it is necessary to have library lemmas relating all

possible combinations of core concepts. Formalizing all the definitions contained in

a typical domain theory textbook would have been a disaster, because without an

astronomical number of lemmas, there would necessarily be gaps in the theorem

library, causing automation to suffer.



www.manaraa.com

286

One concept that did not make it into HOLCF ’11 was continuity on a set.

Some functions in HOLCF are continuous only on a subset of their domains, e.g.

Abs functions generated by type definitions with Cpodef. One possible design

choice would have been to introduce, alongside the ordinary cont, a new notion of

continuity on a set. The problem is that then every new function with a continuity

rule also needs a separate rule for set-restricted continuity. This increases the

size of the theory library, and also adds work for the definition packages, which

must generate new lemmas of this kind. So instead of formalizing a new variation

of continuity, we express continuity on a set in terms of ordinary continuity of

composed functions (see e.g. lemma typedef cont Abs in Sec. 2.3). Overall, HOLCF

seems to be better off without this extra variant of continuity.

One concept that was added to HOLCF ’11 is compactness: In terms of admis-

sibility proofs, compactness brought significant improvements in proof automation.

But what was the full cost of integrating this new notion into HOLCF? Many new

theorems had to be added to the library, relating compactness to admissibility,

chain-finite types, type definitions, and various data constructor functions. Luck-

ily compactness does not have notable interactions with very many other concepts,

so the number of new theorems needed was not too large. In addition to the library

lemmas, it was also necessary to have the Cpodef and Domain packages generate

compactness lemmas for each newly-defined type. Fortunately the library lemmas

about compactness made these new theorems relatively easy to produce, without

requiring too much implementation code. Overall, considering the implementa-

tion effort versus the benefits, adding compactness can be considered a worthwhile

improvement for HOLCF ’11.

Perhaps the most important and far-reaching design decision in HOLCF ’11 was

the selection of the ω-bifinites as the preferred category of domains. We are fortu-

nate to have found such a category that allows so many components to work well



www.manaraa.com

287

together: the powerdomain library, ideal completion, the universal domain, alge-

braic deflations, and the Domain package. Domain theory researchers—including

Scott, Plotkin, and Gunter among others—have explored a variety of different cate-

gories of domains in recent decades [Plo76, GS90, AJ94, Sco08]. One of the primary

motivations for this line of research is to identify categories that are suitable for

modeling recursive datatypes and programs. So in some sense, the implementation

of HOLCF ’11 and the Domain package using the category of ω-bifinite domains

is a realization of this research goal: By demonstrating a completely implemented,

formal, executable model of recursive datatypes, we validate the ω-bifinite domains

as a suitable category of domains for reasoning about computation.

As a final conclusion, we review some high-level characteristics of HOLCF ’11

and what it is best used for. HOLCF ’11 is not the only possible choice for do-

ing interactive proofs about functional programs; indeed, in some situations other

systems might be preferable. For example, for verification of programs that only

manipulate finite values and terminate on all inputs, higher-order logic is prob-

ably a better choice—although HOLCF can certainly reason about terminating

programs, the bottoms and partial values tend to get in the way. But in other

situations, the unique properties of HOLCF ’11 make it the best system available.

For reasoning about programs whose termination is difficult to establish, the

support for general recursion in HOLCF is particularly valuable. Other programs

require HOLCF due to their use of datatypes: Recursive definitions involving

powersets or the full function space are not allowed in HOL or other logics of

total functions; yet recursive datatypes involving powerdomains or the continuous

function space are easy to define in HOLCF ’11. While HOL might work well for

self-contained programs whose inputs are known to be total and finite, HOLCF

’11 is much more useful for verifying open-ended libraries that might be used with

arbitrary inputs, finite or infinite, partial or total. In this situation, it is good to

know that HOLCF ’11 models the source programs and datatypes very accurately:



www.manaraa.com

288

Datatypes include all the same partial and infinite values, and programs satisfy all

the same laziness/strictness properties in HOLCF ’11 as they do in Haskell.

When used for the kind of functional program verification it was designed for,

HOLCF ’11 is an effective and useful tool. First, the system makes it easy to

translate a variety of functional programs into the formalism of the logic. HOLCF

’11 then helps to make proofs about those programs as easy as possible: Using a

combination of lemmas from libraries together with automatically-generated theo-

rems, the proof automation in HOLCF ’11 helps to discharge easy subgoals, letting

users focus their attention on only the most challenging and interesting parts of

proofs. Finally, the definitional implementation of HOLCF ’11 means that users

have a good reason to trust that their proofs are correct.



www.manaraa.com

289

REFERENCES

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-
Calculi. Cambridge University Press, New York, NY, USA, 1998.

[Age94] Sten Agerholm. A HOL Basis for Reasoning about Functional Pro-
grams. PhD thesis, University of Aarhus, BRICS Department of Com-
puter Science, 1994.

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science Volume 3, pages 1–168. Oxford University Press,
1994.

[Bal10] Clemens Ballarin. Tutorial to locales and locale interpretation. In
L. Lambán, A. Romero, and J. Rubio, editors, Contribuciones Cientí-
ficas en honor de Mirian Andrés, pages 1–17, Logroño, Spain, 2010.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice Hall PTR, 2nd edition, May 1998.

[BKV09] Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain
theory and denotational semantics in Coq. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings
of the 22nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs ’09), volume 5674 of LNCS. Springer, 2009.

[BM98] Richard S. Bird and Lambert G. L. T. Meertens. Nested datatypes. In
MPC ’98: Proceedings of the Mathematics of Program Construction,
pages 52–67, London, UK, 1998. Springer-Verlag.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Program-
ming. Prentice Hall, 1 edition, 1988.



www.manaraa.com

290

[BW99] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL -
lessons learned in formal-logic engineering. In Proceedings of the 12th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLS ’99), pages 19–36, London, UK, 1999. Springer-Verlag.

[DGHJ06] Nils Anders Danielsson, Jeremy Gibbons, John Hughes, and Patrik
Jansson. Fast and loose reasoning is morally correct. In POPL
’06: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 206–217. ACM, Jan
2006.

[GH05] Jeremy Gibbons and Graham Hutton. Proof methods for corecursive
programs. Fundamenta Informaticae Special Issue on Program Trans-
formation, 66(4):353–366, April–May 2005.

[Gil06] Andy Gill. Introducing the Haskell Equational Reasoning Assistant. In
Proceedings of the 2006 ACM SIGPLAN Workshop on Haskell, pages
108–109. ACM Press, 2006.

[Gim96] Eduardo Giménez. An application of co-inductive types in Coq: Ver-
ification of the alternating bit protocol. In Selected papers from the
International Workshop on Types for Proofs and Programs, TYPES
’95, pages 135–152, London, UK, 1996. Springer-Verlag.

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of
LNCS. Springer-Verlag, 1979.

[Gor00] Mike Gordon. From LCF to HOL: a short history. In Proof, Language,
and Interaction, pages 169–185, Cambridge, MA, USA, 2000. MIT
Press.

[GS90] Carl A. Gunter and Dana S. Scott. Semantic domains. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics (B), pages 633–674. MIT Press, 1990.

[Gun85] Carl Gunter. Profinite Solutions for Recursive Domain Equations.
PhD thesis, University of Wisconsin at Madison, 1985.

[Gun87] Carl A. Gunter. Universal profinite domains. Information and Com-
putation, 72(1):1–30, 1987.



www.manaraa.com

291

[Gun92] Carl A. Gunter. Semantics of Programming Languages: Structures
and Techniques. Foundations of Computing. MIT Press, 1992.

[Gun94] Elsa L. Gunter. A broader class of trees for recursive type definitions
for HOL. In Higher Order Logic Theorem Proving and Its Applications,
volume 780 of LNCS, pages 141–154. Springer, 1994.

[Haf10] Florian Haftmann. Haskell-style type classes with Isabelle/Isar. http:
//isabelle.in.tum.de/doc/classes.pdf, June 2010.

[HG01] Graham Hutton and Jeremy Gibbons. The generic approximation
lemma. Information Processing Letters, 79(4):197–201, August 2001.

[HMW05] Brian Huffman, John Matthews, and Peter White. Axiomatic con-
structor classes in Isabelle/HOLCF. In Joe Hurd and Tom Melham,
editors, Proceedings of the 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs ’05), volume 3603 of LNCS,
pages 147–162. Springer, 2005.

[HSH02] William Harrison, Tim Sheard, and James Hook. Fine control of de-
mand in Haskell. In 6th International Conference on the Mathematics
of Program Construction, Dagstuhl, pages 68–93. Springer, 2002.

[Hud98] Paul Hudak. Modular domain specific languages and tools. In Proceed-
ings of the Fifth International Conference on Software Reuse, pages
134–142. IEEE Computer Society, June 1998.

[Huf08] Brian Huffman. Reasoning with powerdomains in Isabelle/HOLCF.
In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors,
Theorem Proving in Higher-Order Logics (TPHOLs 2008): Emerging
Trends, pages 45–56, 2008.

[Huf09a] Brian Huffman. A purely definitional universal domain. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics (TPHOLs ’09), volume 5674 of LNCS,
pages 260–275. Springer, 2009.

[Huf09b] Brian Huffman. Stream fusion. In Gerwin Klein, Tobias Nipkow,
and Lawrence Paulson, editors, The Archive of Formal Proofs. http:
//afp.sf.net/entries/Stream-Fusion.shtml, April 2009. Formal
proof development.

http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/classes.pdf
http://afp.sf.net/entries/Stream-Fusion.shtml
http://afp.sf.net/entries/Stream-Fusion.shtml


www.manaraa.com

292

[Kra10a] Alexander Krauss. Partial and nested recursive function definitions in
higher-order logic. Journal of Automated Reasoning, 44(4):303–336,
April 2010.

[Kra10b] Alexander Krauss. Recursive definitions of monadic functions. In
Workshop on Partiality and Recursion (PAR-10), 2010.

[KWP99] Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Lo-
cales: A sectioning concept for Isabelle. In Proceedings of the 12th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs ’99), volume 1690 of LNCS, pages 149–166. Springer-Verlag,
1999.

[Lan66] Peter J. Landin. The next 700 programming languages. Communica-
tions of the ACM, 9(3):157–166, March 1966.

[LHJ95] Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transform-
ers and modular interpreters. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, CA, January 1995.

[Mel89] Thomas F. Melham. Automating recursive type definitions in higher
order logic. In Current Trends in Hardware Verification and Auto-
mated Theorem Proving, pages 341–386. Springer-Verlag, 1989.

[MEP01] Maarten De Mol, Marko Van Eekelen, and Rinus Plasmeijer. Theo-
rem proving for functional programmers – Sparkle: A functional the-
orem prover. In The 13th International Workshop on Implementation
of Functional Languages, IFL 2001, Selected Papers, volume 2312 of
LNCS, pages 55–72. Springer, 2001.

[MNOS99] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–
223, 1999.

[Mog89] Eugenio Moggi. An abstract view of programming languages. Techni-
cal Report ECS-LFCS-90-113, University of Edinburgh, June 1989.

[MP08] Conor McBride and Ross Paterson. Applicative programming with
effects. Journal of Functional Programming, 18(1):1–13, 2008.



www.manaraa.com

293

[Mül98] Olaf Müller. A Verification Environment for I/O Automata Based
on Formalized Meta-Theory. PhD thesis, Technische Universität
München, 1998.

[NP05] Tobias Nipkow and Lawrence C. Paulson. Proof pearl: Defining func-
tions over finite sets. In Joe Hurd and Tom Melham, editors, Theo-
rem Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of
LNCS, pages 385–396. Springer, 2005.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume 2283
of LNCS. Springer, 2002.

[Ohe97] David von Oheimb. Datentypspezifikationen in Higher-Order LCF.
PhD thesis, Technische Universität München, 1997.

[Pap01a] Nikolaos S. Papaspyrou. A resumption monad transformer and its
applications in the semantics of concurrency. In Proceedings of the 3rd
Panhellenic Logic Symposium, Anogia, Greece, July 2001.

[Pap01b] Nikolaos S. Papaspyrou. A resumption monad transformer and its ap-
plications in the semantics of concurrency. Technical Report CSD-SW-
TR-2-01, National Technical University of Athens, School of Electrical
and Computer Engineering, Software Engineering Laboratory, 2001.

[Pau84] Lawrence Paulson. Deriving structural induction in LCF. In Proceed-
ings of the international symposium on Semantics of data types, pages
197–214, New York, NY, USA, 1984. Springer-Verlag New York, Inc.

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive Proof with
Cambridge LCF. Cambridge University Press, New York, NY, USA,
1987.

[Pau97] Lawrence C. Paulson. Mechanizing coinduction and corecursion in
higher-order logic. Journal of Logic and Computation, 7, 1997.

[Pit94] A. M. Pitts. A co-induction principle for recursively defined domains.
Theoretical Computer Science, 124:195–219, 1994. (A preliminary ver-
sion of this work appeared as Cambridge Univ. Computer Laboratory
Tech. Rept. No. 252, April 1992.).



www.manaraa.com

294

[PJ87] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages (Prentice-Hall International Series in Computer Sci-
ence). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[PJ03] Simon Peyton Jones. Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 2003.

[PJRH+99] Simon Peyton Jones, Alastair Reid, Fergus Henderson, Tony Hoare,
and Simon Marlow. A semantics for imprecise exceptions. In Proceed-
ings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, PLDI ’99, pages 25–36, New York, NY,
USA, 1999. ACM.

[Plo76] Gordon D. Plotkin. A powerdomain construction. SIAM J. Comput.,
5(3):452–487, 1976.

[PM00] Nikolaos Papaspyrou and Dragan Macos. A study of evaluation or-
der semantics in expressions with side effects. Journal of Functional
Programming, 10(3):227–244, 2000.

[Reg94] Franz Regensburger. HOLCF: Eine konservative Erweiterung von
HOL um LCF. PhD thesis, Technische Universität München, 1994.

[Reg95] Franz Regensburger. HOLCF: Higher order logic of computable func-
tions. In E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors,
Proceedings of the 8th International Workshop on Higher Order Logic
Theorem Proving and Its Applications, volume 971 of LNCS, pages
293–307, Aspen Grove, Utah, 1995. Springer-Verlag.

[Sco93] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121:411–440, 1993.

[Sco08] Dana Scott. Semilattices and domains. Workshop Domains IX,
Brighton, UK, http://www.informatics.sussex.ac.uk/events/
domains9, September 2008.

[Sli96] Konrad Slind. Function definition in higher-order logic. In Ger-
hard Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright,
Jim Grundy, and John Harrison, editors, Proceedings of the 9th In-
ternational Conference on Theorem Proving in Higher Order Logics
(TPHOLs ’96), volume 1125 of LNCS, pages 381–397. Springer, 1996.

http://www.informatics.sussex.ac.uk/events/domains9
http://www.informatics.sussex.ac.uk/events/domains9


www.manaraa.com

295

[Tel04] Amber Telfer. Fixrec. Master’s thesis, Oregon Health and Science
University, OGI School of Science and Engineering, 2004.

[Thi95] Peter Thiemann. Towards a denotational semantics for concurrent
state transformers. In Masato Takeichi, editor, Fuji Workshop on
Functional and Logic Programming, pages 19–33, Fuji Susono, Japan,
July 1995. World Scientific Press, Singapore.

[Wad87] Philip Wadler. Efficient compilation of pattern-matching. In Simon L.
Peyton Jones, editor, The Implementation of Functional Programming
Languages (Prentice-Hall International Series in Computer Science),
chapter 5, pages 78–103. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1987.

[WW07] Makarius Wenzel and Burkhart Wolff. Building formal method tools
in the Isabelle/Isar framework. In Klaus Schneider and Jens Brandt,
editors, Proceedings of the 20th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs ’07), volume 4732 of LNCS,
pages 352–367, Berlin, Heidelberg, 2007. Springer-Verlag.



www.manaraa.com

296

Appendix A

INDEX OF ISABELLE DEFINITIONS

Note: Entries marked with an asterisk (*) are specific to this document; all other
entries can also be found in the Isabelle/HOLCF 2011 sources.

<<|, see is lub
<|, see is ub
⊥, see bottom
v, see below
Def, 53
Discr, 52
FF, 55
ID, 47
LCons*, 77, 94
LNil*, 77, 94
ONE, 54
PDPlus, 185
PDUnit, 185
TT, 55
adm, 33
apL*, 252
apR*, 273
appendL*, 247
approx chain, 181, 205, 215
approximants, 183
below prod def, 43
below, 29
bindL*, 247
bindN*, 263
bindR*, 270
bottom, 29
cast, 218
cfcomp, 48

cfun defl, 220
cfun map, 120, 198
cfun, 46
chain, 29
class below, 29
class bifinite, 182
class chfin, 29
class cpo, 29
class discrete cpo, 29
class domain, 220
class flat, 29
class pcpo, 29
class po, 29
class predomain syn, 233
class predomain, 233
compact, 35
convex bind, 167
convex join, 167
convex map, 167
convex plus, 167
convex to lower, 167
convex to upper, 167
convex unit, 167
datatype ’a tree*, 267
decisive, 133
decode prod u, 235
defl fun2, 219
defl principal, 218



www.manaraa.com

297

defl set, 225
deflation, 181, 199
domain ’a list1*, 118
domain ’a list2*, 118
domain ’a llist*, 77, 94, 245
domain ’a stream*, 113
domain ’a strictlist*, 118
domain (’s, ’a) R*, 266
domain depth*, 256
encode prod u, 235
ep pair, 197
evenlen*, 82
extension, 178
fail, 93
finite deflation, 181
firsts*, 77, 94, 98, 108
fix, 32
flift1, 54
flift2, 54
fold pd, 185
from sinl up*, 77
from sinl*, 77
fup, 51
ideal completion, 176
ideal, 173
is lub, 29
is ub, 29
iterate, 32
left*, 142
liftdefl of, 233
listA*, 102, 103
listB*, 102, 103
listC*, 102, 103
llist abs*, 227
llist rep*, 227
lower bind, 167
lower join, 167
lower map, 167

lower plus, 167
lower unit, 167
lub, 29
lzip2*, 80
lzip*, 79
mapL*, 247
mapN*, 263
mapR*, 270
match FF, 95
match Leaf*, 144
match Node*, 144
match ONE, 95
match Pair, 95
match TT, 95
match Tip*, 144
match sinl, 95
match sinr, 95
match spair, 95
match up, 95
middle*, 142
mplus, 93
one case, 54
pcpodef ’a match, 93
plusN*, 263
prefix*, 174
preorder, 173
principal inflist*, 176
prod emb, 205
prod liftdefl, 235
prod map, 120, 182, 198
prod prj, 205
repeatL’*, 257
repeatL depth*, 257
repeatL*, 252
run, 93
seq, 48
sfst, 58
sinl, 60



www.manaraa.com

298

sinr, 60
spair, 56
sprod map, 120
sprod, 56
sscase, 62
ssnd, 58
ssplit, 58
ssum map, 120
strictify, 48
strictlist.take Suc*, 132
succeed, 93
tr case, 55
tree list map*, 268
tree map’*, 268
tree map*, 268
type definition, 38
type synonym (’s, ’a) N*, 263
type synonym one, 54
type synonym tr, 54
typedef ’a compact basis, 183
typedef ’a defl, 218
typedef ’a fin defl, 218
typedef ’a pd basis, 185
u liftdefl, 234
u map, 120
udom approx, 204
udom emb, 204
udom prj, 204
undiscr, 52
unitL*, 247
unitN*, 263
unlimited*, 256
upper bind basis, 191
upper bind, 167, 191
upper join, 167, 193
upper map, 167, 192
upper plus, 167, 188
upper principal, 187

upper unit, 167, 186
up, 50
while*, 80
zipL*, 252
zipR*, 273



www.manaraa.com

299

Appendix B

INDEX OF ISABELLE THEOREMS

Note: Entries marked with an asterisk (*) are specific to this document; all other
entries can also be found in the Isabelle/HOLCF 2011 sources.

APP strict, 47
Abs cfun inverse, 46
Abs sprod inverse, 56
Abs sprod strict, 56
DEFL eq llist*, 227
DEFL llist*, 226
LAM strict, 47
Pair below iff, 44
Pair eqD1, 104
Pair eqD2, 104
Pair equalI, 103
Pair strict, 44
R.take induct*, 267
R associativity*, 274, 276
R homomorphism*, 273
R identity*, 274
R induct*, 269
R interchange*, 274
Rep cfun inject, 46
Rep cfun inverse, 46
Rep cfun, 46
Rep sprod inject, 56
Rep sprod inverse, 56
Rep sprod simps, 57
Rep sprod spair, 56
Rep sprod strict, 56
Rep sprod, 56
Rep ssum simps, 60

Rep ssum sinl, 60
Rep ssum sinr, 60
adm all, 34
adm below, 34
adm chfin, 34
adm compact neq, 35
adm compact not below, 35
adm conj, 34
adm const, 34
adm defl set, 225
adm disj, 34
adm eq, 34
adm iff, 34
adm imp, 34
adm neq compact, 35
adm not below, 34
adm subst, 35
app strict, 45
appendL LNil right*, 248
appendL appendL*, 249
appendL strict*, 247
below cfun def, 46
below inflist def*, 175
below sprod def, 56
below up def, 49
below, 199
beta cfun, 47, 70
bifinite, 182



www.manaraa.com

300

bindL appendL*, 249
bindL bindL*, 249
bindL strict*, 247
bindL unitL right*, 248
bindL unitL*, 248
bindN bindN*, 264
bindN unitN right*, 264
bindN unitN*, 264
bindR Done right*, 272
bindR bindR*, 272
bindR strict*, 271
cast below cast, 218
cast defl fun2, 220
cast liftdefl of, 233
cast prod liftdefl, 235
cast u liftdefl, 234
cfun below iff, 47
cfun eq iff, 47
ch2ch cont, 31
chain approx, 181, 205, 215
chfindom monofun2cont, 32
compact Pair, 44
compact bottom, 35
compact chfin, 35
compact principal, 177
compact sinl iff, 62
compact sinr iff, 62
compact spair, 58
compact sprod, 56
compact up, 51
cont2cont APP, 47, 63
cont2cont LAM’, 67
cont2cont LAM, 47, 63, 67
cont2cont Pair, 44, 66
cont2cont fun, 45
cont2cont lambda, 45
cont2cont lift case, 54, 66
cont2cont lub, 31

cont2cont prod case’, 69
cont2cont prod case, 66
cont2contlubE, 30
cont2monofunE, 31
contI2, 31
cont Abs cfun, 46
cont Abs sprod, 56
cont Rep cfun1, 47
cont Rep cfun2, 47
cont Rep cfun, 46
cont Rep sprod, 56
cont apply, 31
cont compose, 31
cont const, 31, 63
cont discrete cpo, 32
cont fst, 44
cont id, 31, 63
cont snd, 44
convex pd below iff, 170
decisive ID, 133
decisive abs rep, 133
decisive bottom, 133
decisive sprod map, 133
decisive ssum map, 133
def cont fix eq, 99, 103
def cont fix ind, 99
defl set bottom, 225
deflation.below, 181
deflation.idem, 181
deflation abs rep, 129
deflation cast, 218
deflation chain min, 130
domain abs iso, 227
domain map ID, 127, 129
e inverse, 197
e p below, 197
ep pair cfun map, 198
ep pair comp, 198



www.manaraa.com

301

ep pair prod map, 198
ep pair udom, 205
eta cfun, 47
evenlen oddlen.induct*, 82
exh casedist0, 138
exh casedists, 138
exh start, 136
extension principal, 179
finite deflation approx, 181, 205, 215
finite deflation prod map, 182
finite deflation upper map, 192
finite fixes, 181
firsts.cont*, 99
firsts.induct*, 100
firsts.unfold*, 99
firsts LCons*, 77
firsts LNil*, 77
firsts functional.simps*, 108
fix eq, 33
fix ind, 33
fix least below, 33
flatdom strict2cont, 32
fst strict, 44
fun below iff, 45
fup simps, 51
ideal UN, 174
ideal principal, 174
idem, 199
iso.abs below, 141
iso.abs bottom iff, 141
iso.abs eq, 141
iso.abs strict, 140
iso.compact abs, 140
isodefl DEFL imp ID, 231
lift case eq, 53
lift induct, 53
list1 list2.induct*, 118
listA.unfold*, 104

listA listB listC.cont*, 103
listA listB listC.induct raw*, 104
listA listB listC.induct*, 105
listA listB listC.unfold raw*, 104
listA listB listC.unfold*, 104
listA listB listC def*, 103
listB.unfold*, 104
listC.unfold*, 104
llist.abs iso*, 227
llist.induct*, 246
llist.rep iso*, 227
llist.take lemma*, 255
llist.take rews*, 254
llist composition*, 254
llist homomorphism*, 257
llist identity*, 253
llist interchange*, 253
llist map ID*, 231
lub ID reach, 131
lub ID take induct*, 131
lub ID take lemma, 131
lub Pair, 44
lub approx, 181, 205, 215
lub eq bottom iff, 48
lzip2 LCons LNil*, 80
lzip extra simps*, 79
lzip strict*, 79
mapL ID*, 248
mapL mapL*, 248
mapL strict*, 247
mapN ID*, 264
mapN conv bindN*, 264
mapN mapN*, 264
mapN plusN*, 264
mapR ID*, 272
mapR conv bindR*, 272
mapR mapR*, 271, 272
mapR strict*, 271



www.manaraa.com

302

match FF simps, 96
match ONE simps, 96
match Pair simps, 96
match TT simps, 96
match sinl simps, 96
match sinl sinl*, 107
match sinr simps, 96
match spair simps, 96
match up simps, 96
mplus simps, 93
obtain principal chain, 177
pd basis induct, 185
plusN absorb*, 264
plusN assoc*, 264
plusN commute*, 264
principal below iff, 177
principal induct, 177
prod cont iff, 67
prod map ID, 182
repeatL.induct*, 255
run simps, 93
seq conv if, 48
seq simps, 48
sfst spair, 58
sfst strict, 58
sinl below sinr, 61
sinl below, 61
sinl bottom iff, 61
sinl eq sinr, 61
sinl eq, 61
sinl strict, 61
sinr below sinl, 61
sinr below, 61
sinr bottom iff, 61
sinr eq sinl, 61
sinr eq, 61
sinr strict, 61
snd strict, 44

spair below iff, 57
spair bottom iff, 57
spair eq iff, 57
spair strict1, 57
spair strict2, 57
sprodE, 57
sprod induct, 57
sscase simps, 62
ssnd spair, 58
ssnd strict, 58
ssplit simps, 58
ssumE, 61
ssum induct, 61
stream.chain take*, 117, 128
stream.deflation take*, 129
stream.exhaust*, 113
stream.lub take*, 117
stream.nchotomy*, 113
stream.reach*, 117, 131
stream.take 0*, 128
stream.take Suc*, 128
stream.take below*, 117, 130
stream.take induct*, 117, 131
stream.take lemma*, 117, 131
stream.take strict*, 130
stream.take take*, 117, 130
strictlist.induct*, 119
strictlist.take induct*, 118
thelub fun, 45
tree.exhaust*, 137
tree.finite induct*, 145
tree.induct*, 146, 267
tree.nchotomy*, 137
tree.take induct*, 146
tree.take rews*, 144
tree all induct*, 268
tree map induct*, 269
typedef compact, 40



www.manaraa.com

303

typedef cont Abs, 40
typedef cont Rep, 39
typedef domain class, 225
typedef ideal completion, 176
typedef ideal cpo, 175
typedef ideal po, 175
typedef is lub, 39
typedef pcpo, 41
typedef po, 38
u liftdefl liftdefl of, 234
udom approx, 205
unlimited.induct*, 257
up below, 50
up chain lemma, 50
up defined, 50
up eq, 50
upper bind basis simps, 191
upper bind plus, 192
upper bind unit, 192
upper pd induct, 189
upper plus absorb, 189
upper plus assoc, 189
upper plus below1, 189
upper plus below unit iff, 190
upper plus commute, 189
upper plus principal, 188
upper unit Rep compact basis, 188
upper unit below iff, 190
while.induct*, 81
while post condition*, 81
zipL extra simps*, 252
zipL repeatL simps*, 253
zipR Done Done*, 273
zipR Done More*, 273
zipR More Done*, 273
zipR More More*, 273


	Portland State University
	PDXScholar
	1-1-2011

	HOLCF '11: A Definitional Domain Theory for Verifying Functional Programs
	Brian Charles Huffman
	Let us know how access to this document benefits you.
	Recommended Citation


	Title
	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Informal reasoning with Haskell
	Haskell terms and types
	Equational reasoning
	Proofs by induction
	Bottoms and partial values
	Infinite values and admissibility conditions

	A preview of formal reasoning with HOLCF '11
	Historical background
	Logic of computable functions
	LCF style theorem provers
	Higher order logic and the definitional approach
	Isabelle/HOLCF

	Thesis statement
	Outline

	Basic Domain Theory in HOLCF
	Introduction
	Abstract domain theory
	Type class hierarchy for cpos
	Continuous functions
	Fixed points, admissibility, and compactness

	Defining cpos as subtypes: The Cpodef package
	HOLCF types
	Cartesian product cpo
	Full function space cpo
	Continuous function type
	Lifted cpo
	Cpos from HOL types
	Strict product type
	Strict sum type

	Automating continuity proofs
	Original HOLCF continuity tactic
	Bottom-up continuity proofs
	Efficient continuity rules using products

	Evaluation

	Recursive Value Definitions: The Fixrec Package
	Introduction
	Fixrec package features
	Expressing recursion with fix
	Pattern match compilation
	Compiling to simple case expressions
	Original Fixrec: Monadic pattern matching
	New Fixrec: Continuation-based matching combinators

	Implementation
	Pattern match type
	Table of pattern match combinators
	Pattern match compilation
	Fixed point definition and continuity proof
	Proving pattern match equations
	Mutual recursion

	Discussion

	Recursive Datatype Definitions: The Domain Package
	Introduction
	Domain package features
	Strict and lazy constructors
	Case expressions
	Mixfix syntax
	Selector functions
	Discriminator functions
	Fixrec package support
	Take functions
	Induction rules
	Finite-valued domains
	Coinduction
	Indirect recursion

	Implementation
	Input specification module
	Isomorphism axioms module
	Take functions module
	Reach axioms module
	Take induction module
	Constructor functions module
	Take rules module
	Induction rules module

	Discussion
	Problems with axioms


	Powerdomains and Ideal Completion
	Introduction
	Nondeterminism monads
	Powerdomains
	Convex powerdomain
	Upper powerdomain
	Lower powerdomain
	Visualizing powerdomains

	Powerdomain library features
	Type class constraints
	Automation

	Ideal completion
	Preorders and ideals
	Formalizing ideal completion
	Continuous extensions of functions
	Formalizing continuous extensions

	Bifinite cpos
	Type class for bifinite cpos
	Bifinite types as ideal completions

	Construction of powerdomains
	Powerdomain basis type
	Defining powerdomain types with ideal completion
	Defining constructor functions by continuous extension
	Proving properties about the constructors
	Defining functor and monad operations

	Discussion

	The Universal Domain and Definitional Domain Package
	Introduction
	Background
	Embedding-projection pairs and deflations
	Deflation model of datatypes

	Universal domain library features
	Construction of the universal domain
	Building a sequence of increments
	A basis for the universal domain
	Basis ordering relation
	Building the embedding and projection
	Bifiniteness of the universal domain
	Implementation in HOLCF

	Algebraic deflations
	Limitations of ordinary deflations
	Type of algebraic deflations
	Combinators for algebraic deflations
	Type class of representable domains

	The definitional Domain package
	Proving the isomorphism theorems
	Proving the reach lemma
	User-visible changes

	Unpointed predomains
	Related work and conclusion

	Case Study and Conclusion: Verifying Monads
	Introduction
	The lazy list monad
	Datatype and function definitions
	Verifying the functor and monad laws
	Applicative functors and laws for zip
	Verifying the applicative functor laws
	Coinductive proof methods

	A concurrency monad
	Composing monads
	State monad transformer
	Verifying a state/nondeterminism monad
	Resumption monad transformer
	Defining the full concurrency monad
	Induction rules for indirect-recursive domains
	Verifying functor and monad laws
	Verification of nondeterministic interleaving

	Summary
	Comparison to Related Work
	Conclusion

	References
	Appendix A: Index of Isabelle Definitions
	Appendix B: Index of Isabelle Theorems

